Skip to main content
Log in

The Effects of Humidity on Spontaneous Cocrystallization: A Survey of Diacid Cocrystals with Caffeine, Theophylline, and Nicotinamide

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Pharmaceutical cocrystals comprise one active pharmaceutical ingredient (API) and at least one small molecule excipient coformer. While solvent evaporation and mechanochemistry are the preferred methods for their synthesis, some cocrystals are known to form spontaneously at ambient conditions when powders of input materials are mixed—a process not yet fully understood. Aqueous humidity is also known to accelerate spontaneous cocrystal formation. We report here the extent of spontaneous cocrystallization for 14 cocrystal systems, at four levels of humidity. The binary cocrystals in our study consist of a model API (caffeine, theophylline, nicotinamide) and a small chain diacid coformer (oxalic acid, malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid). The spontaneous cocrystal formation was monitored ex situ by powder X-ray diffraction over several weeks. Our results show cocrystal formation in all 14 systems to varying extent and are consistent with literature reports that higher humidity correlates with more rapid cocrystal formation. We find that cocrystals containing smaller coformers often form faster. Based on our findings, we identify several cocrystals as candidates for future study.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CA:

Caffeine

TH:

Theophylline

NA:

Nicotinamide

OA:

Oxalic acid

MA:

Malonic acid

ME:

Maleic acid

FU:

Fumaric acid

SU:

Succinic acid

GA:

Glutaric acid

PXRD:

Powder X-ray diffraction

References

  1. Karimi-Jafari M, Padrela L, Walker GM, Croker DM (2018) Creating cocrystals: a review of pharmaceutical cocrystal preparation routes and applications. Cryst Growth Des 18:6370–6387

    Article  CAS  Google Scholar 

  2. Steed JW (2013) The role of co-crystals in pharmaceutical design. Trend Pharm Sci 34:185–193

    Article  CAS  Google Scholar 

  3. Blagden N, Berry DJ, Parkin A, Javed H, Ibrahim A, Gavan PT, De Matos LL, Seaton CC (2008) Current directions in co-crystal growth. New J Chem 32:1659–1672

    Article  CAS  Google Scholar 

  4. Sarceviča I, Orola L, Nartowski KP, Khimyak YZ, Round AN, Fábián L (2015) Mechanistic and kinetic insight into spontaneous cocrystallization of isoniazid and benzoic acid. Mol Pharmaceutics 12:2981–2992

    Article  Google Scholar 

  5. Stoler E, Warner JC (2015) Non-covalent derivatives: cocrystals and eutectics. Molecules 20:14833–14848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fernandes J, Sardo M, Mafra L, Choquesillo-Lazarte D, Massiocchi N (2015) X-Ray and NMR crystallography studies of novel theophilline cocrystals prepared by liquid assisted grinding. Cryst Growth Des 15:2674–2683

    Article  Google Scholar 

  7. Kaupp G (2008) Waste-free synthesis and production all across chemistry with the benefit of self-assembled crystal packings. Phys Org Chem 21:630–643

    Article  CAS  Google Scholar 

  8. Wieczorek-Ciurowa K (2007) Mechanochemical syntheses as an example of green processes. J Therm Anal Cal 88:213–217

    Article  CAS  Google Scholar 

  9. Report on the Environment: Volatile Organic Compounds; Environmental Protection Agency. U.S. EPA, 2018b.

  10. 2014 National Emissions Inventory, version 2. U.S. Environmental Protection Agency. U.S. EPA, 2018b.

  11. Howard JL, Cao Q, Browne DL (2018) Mechanochemistry as an emerging tool for molecular synthesis: what can it offer? Chem Sci 9:3080–3094

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tumanova N, Tumanov N, Robeyns K, Fischer F, Fusaro L, Morelle F, Ban V, Hautier G, Filinchuk Y, Wouters J, Leyssens T, Emmerling F (2018) Opening Pandora’s Box: chirality, polymorphism, and stoichiometric diversity in flurbiprofen/proline cocrystals. Cryst Growth Des 18:954–961

    Article  CAS  Google Scholar 

  13. Kuroda R, Higashiguchi K, Hasebe S, Imai Y (2004) Crystal to crystal transformation in the solid state. CrystEngComm 6:463–468

    Article  CAS  Google Scholar 

  14. Ji C, Hoffman MC, Mehta MA (2017) Catalytic effect of solvent vapors on the spontaneous formation of caffeine-malonic acid cocrystal. Cryst Growth Des 17:1456–1459

    Article  CAS  Google Scholar 

  15. Ibrahim AY, Forbes RT, Blagden N (2011) Spontaneous crystal growth of co-crystals: the contribution of particles size reduction and convection mixing of the co-formers. CrystEngComm 13:1141–1152

    Article  CAS  Google Scholar 

  16. Maheshwari C, Jayanskar A, Khan N, Amidon G, Rodriguez-Homedo N (2009) Factors that influence the spontaneous formation of pharmaceutical cocrystals by simply mixing solid reactants. CrystEngComm 11:493–500

    Article  CAS  Google Scholar 

  17. Braga D, Giaffreda SL, Rubini K, Grepioni F, Chierotti MR, Gobetto R (2007) Making crystals from crystals: three solvent-free routes to the hydrogen bonded co-crystal between 1,1’-di-pyridyl-ferrocene and anthranilic acid. CrystEngComm 9:39–45

    Article  CAS  Google Scholar 

  18. Good D, Miranda C, Rodriguez-Hornedo N (2011) Dependence of cocrystal formation and thermodynamic stability on moisture sorption by amorphous polymer. CrystEngComm 13:1181–1189

    Article  CAS  Google Scholar 

  19. Veith H, Zaeh M, Luebbert C, Rodriguez-Hornedo N, Sadowski G (2021) Stability of pharmaceutical co-crystals at humid conditions can be predicted. Pharmaceutics 13:433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Veith H, Luebbert C, Rodriguez-Hornedo N, Sadowski G (2021) Co-Crystal screening by vapor sorption of organic solvents. Cryst Growth Des 21:4445–4455

    Article  CAS  Google Scholar 

  21. Thakur TS, Thakuria R (2020) Crystalline multicomponent solids: an alternative for addressing the hydroscopicity issue in pharmaceutical materials. Cryst Growth Des 20:6245–6265

    Article  CAS  Google Scholar 

  22. Sarcevica I, Orola L, Belyakov S, Veidis M (2013) Spontaneous cocrystal hydrate formation in the solid state: crystal structure aspects and kinetics. New J Chem 37:2978–2982

    Article  CAS  Google Scholar 

  23. Friščić T, Jones W (2009) Recent advances in understanding the mechanism of cocrystal formation via grinding. Cryst Growth Des 9:1621–1637

    Article  Google Scholar 

  24. Užarević K, Halasz I, Friščić T (2015) Real-time and in situ monitoring of mechanochemical reactions: a new playground for all chemists. J Phys Chem Lett 6:4129–4140

    Article  PubMed  Google Scholar 

  25. Mandala VS, Loewus SJ, Mehta MA (2014) Monitoring cocrystal formation via in situ solid-state NMR. J Phys Chem Lett 5:3340–3344

    Article  PubMed  CAS  Google Scholar 

  26. Lukin S, Lončarić I, Tireli M, Stolar T, Blanco MV, Lazić P, Užarević K, Halasz I (2018) Experimental and theoretical study of selectivity in mechanochemical cocrystallization of nicotinamide with anthranilic and salicylic acid. Cryst Growth Des 18:1539–1547

    Article  CAS  Google Scholar 

  27. Trask AV, Motherwell WDS, Jones W (2005) Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst Growth Des 5:1013–1021

    Article  CAS  Google Scholar 

  28. Trask AV, Motherwell WDS, Jones W (2006) Physical stability enhancement of theophylline via cocrystallization. Int J Pharm 320:114–123

    Article  PubMed  CAS  Google Scholar 

  29. Hathwar VR, Pal R, Row TNG (2010) Charge density analysis of crystals of nicotinamide with salicylic acid and oxalic acid: an insight into the salt to cocrystal continuum. Cryst Growth Des 10:3306–3310

    Article  CAS  Google Scholar 

  30. Karki S, Friščić T, Jones W (2009) Control and interconversion of cocrystal stoichiometry in grinding: stepwise mechanism for the formation of a hydrogen-bonded cocrystal. CrystEngComm 11:470–481

    Article  CAS  Google Scholar 

  31. Orola L, Veidis MV (2009) Nicotinamide fumaric acid supramolecular cocrystals: diversity of soichiometry. CrystEngComm 11:415–417

    Article  CAS  Google Scholar 

  32. Thompson LJ, Voguri RS, Cowell A, Male L, Tremayne M (2010) The cocrystal nicotinamide-succinic acid (2/1). Acta Crystallogr Sect C 66:o421–o424

    Article  CAS  Google Scholar 

  33. Jayanskar A, Good DJ, Rodriguez-Hornedo N (2007) Mechanisms by which moisture generates cocrystals. Mol Pharm 4:360–372

    Article  Google Scholar 

  34. Ervasti T, Aaltonen J, Ketolainen J (2015) Theophylline-nicotinamide cocrystal formation in physical mixture during storage. Int J Pharm 486:121–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mr. William Mohler and Mr. Michael Miller of Oberlin College for their assistance at various stages of this project.

Funding

Funding for this research was provided by National Science Foundation, RUI (Awards CHE-1464948 and CHE-2100582); National Science Foundation, MRI (Award DMR-0922588). Support is also acknowledged from Oberlin College.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish A. Mehta.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2055 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, R.D., Vigilante, N.J., Frederick, A.D. et al. The Effects of Humidity on Spontaneous Cocrystallization: A Survey of Diacid Cocrystals with Caffeine, Theophylline, and Nicotinamide. J Chem Crystallogr 52, 479–484 (2022). https://doi.org/10.1007/s10870-022-00922-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00922-8

Keywords

Navigation