Skip to main content
Log in

Interhalogen 1,2,3-Triazolium Ionic Liquid: Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Photophysical Properties

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A new interhalogen ionic liquid [C17H25N3Br]+[IBr2] (IL-1) was synthesized from its triazolium iodide precursor [C17H26N3+I] in THF under cold and basic conditions. X-ray diffraction data showed that IL-1 is composed of two moieties contained in a triclinic unit cell; the five-membered triazolium cation and an almost linear iodidobromide anion, IBr2. The Br atoms of the anion form quadfurcated C–H···Br hydrogen bonds with neighbouring cationic halo-1,2,3-triazolium H-species. Intermolecular Br···Br halogen bonds and I···πtriazole interactions form a distinctive ring-like pattern that links together four molecular units in the crystal packing. Hirshfeld surface analysis revealed that the most significant dnorm surface contribution at 59% is due to H···H and reciprocal C···H contacts, while the Br···Br contacts only contributed 3%. The prevalence of extensive H···H and C···H contacts is potentially due to the linear aliphatic chain, the N-octyl wingtip substituent of the triazolyl moiety. The Hirshfeld surface mapping also shows the contribution of intermolecular C–H···Br interactions at 26% of all contacts. The title compound (IL-1) showed interesting photophysical properties in MeCN solution, with an absorption band at 254 nm and two-shoulder emission bands due to strong π → π transitions from the triazolium moiety, indicating the presence of two energetically associated species.

Graphical Abstract

Structural and photophysical studies on a new ionic liquid compound containing a mixed halide anion [C17H25N3Br]+[IBr2] have yielded important results on intermolecular interactions between the triazolium cation and the iodidobromide counterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Svensson PH, Kloo L (2003) Chem Rev 103:1649–1684

    Article  CAS  Google Scholar 

  2. Burgenmeister B, Sonnenberg K, Riedel S, Krossing I (2017) Chem Eur J 23:11312

    Article  CAS  Google Scholar 

  3. Mooney RCL, Kristallogr Z (1938) Kristallgeom Kristallphys Kristallchem 98:377

    CAS  Google Scholar 

  4. Buckles RE, Mills JF (1954) J Am Chem Soc 76:3716

    Article  CAS  Google Scholar 

  5. Naito T, Tateno A, Udagawa T, Kobayashi H, Kato R, Kobayashi A, Nogami T (1994) J Chem Soc Faraday Trans 90:763

    Article  CAS  Google Scholar 

  6. Svensson PH, Kloo LJ (2000) Chem Soc Dalton Trans 2449:22–26

    Google Scholar 

  7. Gorlov M, Pettersson H, Hagfeldt A, Kloo L (2007) Inorg Chem 46:3566

    Article  CAS  Google Scholar 

  8. Bortolini O, Bottai M, Chiappe C, Conte V, Pieraccini D (2002) Green Chem 4:621

    Article  CAS  Google Scholar 

  9. Bagno A, Butts C, Chiappe C, D’Amico F, Lord JCD, Pieraccini D, Rastrelli F (2005) Org Biomol Chem 3:1624

    Article  CAS  Google Scholar 

  10. Van den Bossche A, De Witte E, Dehaen W, Binnemans K (2018) Green Chem 20:3327

    Article  Google Scholar 

  11. Deshmukh A, Gore B, Thulasiram HV, Swamy VP (2015) RSC Adv 5:88311–88315

    Article  CAS  Google Scholar 

  12. Mncube SG, Bala MD (2016) J Mol Liq 215:396–401

    Article  CAS  Google Scholar 

  13. Muzart J (2006) Adv Synth Catal 348:275–295

    Article  CAS  Google Scholar 

  14. Bruker (2009) APEXII. Bruker AXS Inc, Madison

  15. Bruker (2009) SAINT. Bruker AXS Inc, Madison

  16. Bruker (2009) SADABS. Bruker AXS Inc, Madison

  17. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  18. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  19. Macrae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M, Wood PA (2020) J Appl Cryst 53:226–235

    Article  CAS  Google Scholar 

  20. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J. Appl. Cryst. 42:339–341

    Article  CAS  Google Scholar 

  21. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. University of Western Australia

  22. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  23. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  24. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  25. Seth SK, Saha NC, Ghosh S, Kara T (2011) Chem Phys Lett 506:309–314

    Article  CAS  Google Scholar 

  26. Tepper R, Schulze B, Jäger M, Friebe C, Scharf DH, Görls H, Schubert US (2015) Org Chem 80(6):3139–3150

    Article  CAS  Google Scholar 

  27. Mercurio JM, Knighton RC, Cookson J, Beer PD (2014) Eur J Chem 20:11740–11749

    Article  CAS  Google Scholar 

  28. Giese M, Albrecht M, Bohnen C, Repenko T, Valkonen A, Rissanen K (2014) Dalton Trans 43:1873–1880

    Article  CAS  Google Scholar 

  29. Buist AR, Kennedy AR (2014) Cryst Growth Des 14:6508–6513

    Article  CAS  Google Scholar 

  30. Maleckis A, Kampf JW, Sanford MS (2013) J Am Chem Soc 135:6618–6625

    Article  CAS  Google Scholar 

  31. Chernov’yants MS, Burykin IV, Kostrub VV, Tsupak EB, Starikova ZA, Kirsanova JA (2012) J. Mol. Struct. 110:98–103

    Article  Google Scholar 

  32. d’Agostino S, Braga D, Grepioni F, Taddei P (2014) Cryst Growth Des 14(2):821–829

    Article  CAS  Google Scholar 

  33. Giese M, Albrecht M, Ivanova G, Valkonen A, Rissanen K (2012) Supramol Chem 24:48–55

    Article  CAS  Google Scholar 

  34. Cristiani F, Demartin F, Devillanova FA, Isaia F, Lippolis V, Verani G (1994) Inorg Chem 33:6315–6324

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to the NRF and the Centre of Excellence in Catalysis (c* change, PAR-08) for generous financial support. We thank Mr S.A. Ogundare for assistance with UV–Vis and fluorescence spectroscopic data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad D. Bala.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mncube, S.G., Zamisa, S.J. & Bala, M.D. Interhalogen 1,2,3-Triazolium Ionic Liquid: Synthesis, Crystal Structure, Hirshfeld Surface Analysis and Photophysical Properties. J Chem Crystallogr 52, 242–250 (2022). https://doi.org/10.1007/s10870-021-00912-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00912-2

Keywords

Navigation