Skip to main content
Log in

Cu(NH2SO3) π-Complexes with Allyl Derivatives of 1,3,4-Thiadizoles: Synthesis and Structural Formation Through Weak Interactions

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

This work is directed toward the synthesis and structure characterization of the two novel copper(I) sulfamate π,σ-complexes [Cu2(Thiaz2)2(NH2SO3)2] (1) and [Cu2(Thiaz3)(NH2SO3)2]·2H2O (2) based on 2-amino-5-allylthio-1,3,4-thiadiazole (Thiaz2) and N2,N5-di(allyl)-1,3,4-thiadiazole-2,5-diamine (Thiaz3) ligands. Structural analysis of 1 was performed in comparison with the earlier-studied, similar complex [Cu2(Thiaz1)2(NH2SO3)2] (3) (Thiaz1-2-allylamino-5-methyl-1,3,4-thiadiazole). In the structures of 13, the respective organic molecule fully realizes its coordination ability being attached to the metal centres through two nitrogen atoms of 1,3,4-thiadiazole core as well as by one η2-allyl groups in 1 and 3 or by two η2-allyl groups in 2. In crystal structures of 1 & 2, [Cu2(Thiaz)2(NH2SO3)2] dimers are interconnected by N–H⋯O hydrogen bonds into layers, while water molecules in 2 connect NH2SO3 anions into hydrogen-bonded ribbon which together with N–H⋯O bonds of Thiaz3 amino-groups stitch organometallic fragments into a framework. To depict H-bonded interaction in the structures 13 Hirshfeld surface analysis has been performed.

Graphic Abstract

The synthesis and X-ray structures of Cu(NH2SO3) π,σ-complexes based on allyl-substituted 1,3,4-thiadiazole ligands are presented and weak interactions are specially discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schatz J, Gogić K, Benkert T (2020) 1,3,4-thiadiazoles. In: Reference module in chemistry, molecular sciences and chemical engineering. Elsevier

  2. Hu Y, Li C-Y, Wang X-M, Yang Y-H, Zhu H-L (2014) 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem Rev 114:5572–5610. https://doi.org/10.1021/cr400131u

    Article  CAS  PubMed  Google Scholar 

  3. Pokhodylo NT, Shyyka OY, Savka RD, Obushak MD (2018) 2-Azido-1,3,4-thiadiazoles, 2-azido-1,3-thiazoles, and aryl azides in the synthesis of 1,2,3-triazole-4-carboxylic acids and their derivatives. Russ J Org Chem 54:1090–1099. https://doi.org/10.1134/S1070428018070205

    Article  CAS  Google Scholar 

  4. Frija LMT, Pombeiro AJL, Kopylovich MN (2016) Coordination chemistry of thiazoles, isothiazoles and thiadiazoles. Coord Chem Rev 308:32–55. https://doi.org/10.1016/j.ccr.2015.10.003

    Article  CAS  Google Scholar 

  5. Rourke J (2006) Christoph elschenbroich. Organometallics. Wiley, 3rd edn. ISBN 3-527-29390-6 (paperback). Appl Organomet Chem 20:811–811. https://doi.org/10.1002/aoc.1136

  6. Slyvka Y, Goreshnik E, Pavlyuk O, Mys’kiv M (2013) Copper(I) π-complexes with allyl derivatives of heterocyclic compounds: structural survey of their crystal engineering. Open Chem 11:1875–1901. https://doi.org/10.2478/s11532-013-0323-3

    Article  CAS  Google Scholar 

  7. Goreshnik EA, Veryasov G, Morozov D, Slyvka Yu, Ardan B, Mys’kiv M (2016) Solvated copper(I) hexafluorosilicate π-complexes based on [Cu2(amtd)2]2+ (amtd = 2-allylamino-5-methyl-1,3,4-thiadiazole) dimer. J Organomet Chem 810:1–11. https://doi.org/10.1016/j.jorganchem.2016.03.001

    Article  CAS  Google Scholar 

  8. Pearson RG (1968) Hard and soft acids and bases, HSAB, part II: underlying theories. J Chem Educ 45:643. https://doi.org/10.1021/ed045p643

    Article  CAS  Google Scholar 

  9. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856. https://doi.org/10.1021/ja00005a073

    Article  CAS  Google Scholar 

  10. Ardan B, Kinzhybalo V, Slyvka Y, Shyyka O, Luk’yanov M, Lis T, Mys’kiv M (2017) Ligand-forced dimerization of copper(I)–olefin complexes bearing a 1,3,4-thiadiazole core. Acta Crystallogr Sect C Struct Chem 73:36–46. https://doi.org/10.1107/S2053229616018751

    Article  CAS  Google Scholar 

  11. Slyvka YI (2015) Synthesis and crystal structure of a π-complex of Cu(CF3SO3) with 5-(allylthio)-1-[2-(trifluoromethyl)phenyl]-1H-tetrazole of the composition [Cu2(C11H9F3N4S)2(CF3SO3)2]. J Struct Chem 56:998–999. https://doi.org/10.1134/S002247661505025X

    Article  CAS  Google Scholar 

  12. Slyvka YI (2015) Structural features of CuCl and Cu2SiF6 π-complexes with 2-allylamino-5-phenyl-1,3,4-thiadiazole of the composition [CuCl(C11H11N3S)] and [Cu(C11H11N3S)(H2O)(CH3CN)]2SiF6·2CH3CN. J Struct Chem 56:1118–1123. https://doi.org/10.1134/S0022476615060141

    Article  CAS  Google Scholar 

  13. Slyvka YI, Ardan BR, Mys’kiv MG (2018) Copper(I) chloride π-complexes with 2,5-bis(allylthio)-1,3,4-thiadiazole: synthesis and structural features. J Struct Chem 59:388–394. https://doi.org/10.1134/S0022476618020191

    Article  CAS  Google Scholar 

  14. Luk’yanov M, Slyvka Y, Ardan B, Mys’kiv M (2018) Synthesis and crystal structure of copper(I) sulfamate π-complex with 5-methyl-N-(allyl)-1,3,4-thiadiazol-2-amine of [Cu2(C6H10N3S2)2(NH2SO3)2] composition. Visnyk Lviv Univ Ser Chem 59:157–159. https://doi.org/10.30970/vch.5901.157

    Article  Google Scholar 

  15. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge Structural Database. Acta Crystallogr Sect B Struct Sci Cryst Eng Mater 72:171–179. https://doi.org/10.1107/S2052520616003954

    Article  CAS  Google Scholar 

  16. Spackman MA, Jayatilaka D (2009) Hirshfeld surface analysis. CrystEngComm 11:19–32. https://doi.org/10.1039/B818330A

    Article  CAS  Google Scholar 

  17. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net

  18. Fromm E, Layer E, Nerz K (1923) Abkömmlinge von Thio-semicarbaziden und Hydrazo-dithio-dicarbonamiden. Justus Liebig’s Ann der Chemie 433:1–17. https://doi.org/10.1002/jlac.19234330102

    Article  CAS  Google Scholar 

  19. Slyvka YI, Pavlyuk OV, Luk’yanov MY, Mys’kiv MG (2017) Method for synthesis of single crystals of ionic copper(I)-olefin coordination compounds. Ukraine Patent UA 118819, Bull. № 16

  20. Agilent (2014) CrysAlis PRO. Agilent Technologies Ltd, Yarnton, Oxfordshire

  21. Rigaku, Corporation (1999) The Woodlands, Texas. CrystalClear

  22. Sheldrick GM (2015) SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  23. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  24. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  25. Diamond - Crystal and Molecular Structure Visualization Crystal Impact - Dr. Putz H & Dr. K. Brandenburg GbR, Kreuzherrenstr. 102, 53227 Bonn, Germany

  26. Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalt Trans 10:955–964. https://doi.org/10.1039/B617136B

    Article  Google Scholar 

  27. Dewar MJS (1951) A review of π-complex theory. Bull Soc Chim Fr C71

  28. Chatt J, Duncanson LA (1953) Olefin coordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J Chem Soc 1953:2939–2947. https://doi.org/10.1039/jr9530002939

    Article  Google Scholar 

  29. Slyvka YI, Pokhodylo NT, Mys’kiv MG (2019) Copper(I) π-complexes with allyl substituted 1-aryl-1H-tetrazole-5-thiols: Synthesis and their structural features. Vopr Khim i Khim Tekh. https://doi.org/10.32434/0321-4095-2019-123-2-30-38

  30. Slyvka YI, Fedorchuk AA, Pokhodylo NT, Lis T, Kityk IV, Mys’kiv MG (2018) A novel copper(I) sulfamate π-complex based on the 5-(allylthio)-1-(3,5-dimethylphenyl)-1H-tetrazole ligand: alternating-current electrochemical crystallization, DFT calculations, structural and NLO properties studies. Polyhedron 147:86–93. https://doi.org/10.1016/j.poly.2018.03.015

    Article  CAS  Google Scholar 

  31. Kawade VA, Bhat SS, Butcher RJ (2019) One-dimensional self-assembled coordination polymer, {[Cu(bpy)(bpe)(NO3)2]·(H2O)4}n. J Chem Crystallogr 49:275–280. https://doi.org/10.1007/s10870-019-00782-9

    Article  CAS  Google Scholar 

  32. Alvarez S (2013) A cartography of the van der Waals territories. Dalt Trans 42:8617–8636. https://doi.org/10.1039/c3dt50599e

    Article  CAS  Google Scholar 

  33. Brooks AC, Martin L, Day P, Lopes EB, Almeida M, Kikuchi K, Fujita W, Sasamori K, Aktusue H, Wallis JD (2013) Hydrogen bonded anion ribbons, networks and clusters and sulfur–anion interactions in novel radical cation salts of BEDT-TTF with sulfamate, pentaborate and bromide. Dalt Trans 42:6645. https://doi.org/10.1039/c3dt32430c

    Article  CAS  Google Scholar 

  34. Kan W-Q, Wen S-Z, Zhao P-S (2021) Two Ag(I)-containing supramolecular coordination polymers constructed from the multidentate N-donor ligand 1-((1H-1,2,4-triazol-1-yl)methyl)-3,5-bis(3-pyridyl)-1,2,4-triazole based on hydrogen-bonding and π–π interactions: syntheses, crystal structures, optical band gaps and luminescent properties. J Chem Crystallogr. https://doi.org/10.1007/s10870-020-00877-8

    Article  Google Scholar 

  35. Li Y, Tang S, Yusov A, Rose J, Borrfors AN, Hu CT, Ward MD (2019) Hydrogen-bonded frameworks for molecular structure determination. Nat Commun 10:4477. https://doi.org/10.1038/s41467-019-12453-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are greatly thankful to the Ministry of Education and Science of Ukraine (2020–2022) for financially support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii I. Slyvka.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10870_2021_906_MOESM1_ESM.pdf

CCDC 2072149 (1) and 2072151 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. Supplementary file1 (PDF 133 kb)

Supplementary file2 (PDF 153 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slyvka, Y.I., Goreshnik, E.А., Pokhodylo, N.T. et al. Cu(NH2SO3) π-Complexes with Allyl Derivatives of 1,3,4-Thiadizoles: Synthesis and Structural Formation Through Weak Interactions. J Chem Crystallogr 52, 205–213 (2022). https://doi.org/10.1007/s10870-021-00906-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00906-0

Keywords

Navigation