Skip to main content
Log in

Alkylpyridinium lodobismuthates(III)

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The reaction of N-alkyl pyridinium iodide salts (RPy+I, R = Me, Et, nPr, nBu) with BiI3 produced various alkyl pyridinium iodobismuthate(III) compounds, (RPy)y−3x[BixIy]. A wide nuclearity range was observed in the iodobismuthate(III) clusters when crystallized from acetone/acetonitrile: For R = Me, the dominant phase, {(MePy)[BiI4]}n, is a chain of edge-sharing BiI6 octahedra. Another phase, (MePy)3[Bi2I9]‧MeCN, has a face-sharing dimer of BiI6 octahedra. Five phases are reported for R = Et: (EtPy)3[Bi2I9\({\raise0.5ex\hbox{$\scriptstyle 2$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}\) MeCN, (EtPy)3[Bi3I12], (EtPy)3[Bi3I12]·MeCN (a new V-shaped trimeric anion structural type), (EtPy)4[Bi4I16], and (EtPy)4[Bi6I22]·2MeCN. Two R = nPr phases were found: (PrPy)3[Bi2I9] and (PrPy)4[Bi4I16]·MeCN. Two phases were also found for R = nBu: (BuPy)3[Bi2I9] and (BuPy)4[Bi4I16]. Bulk synthesized products shown diffraction matches to {(MePy)[BiI4]}n, (EtPy)3[Bi3I12], (PrPy)4[Bi4I16], and (BuPy)4[Bi4I16], respectively. Thermal analysis of all four bulk compounds showed near complete mass loss above 300 °C.

Graphic Abstract

The structures, phases, and thermal behavior of N-alkyl pyridinium iodobismuthate(III) compounds (RPy)y−3x[BixIy] (R = Me, Et, nPr, nBu) are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Crystallographic data are available free of charge through the Cambridge Crystallographic Data Centre.

Code Availability

Not applicable.

References

  1. Fisher GA, Norman NC (1994) The structures of the group 15 Element(III) Halides and Halogenoanions. Adv Inorg Chem 41:233–271. https://doi.org/10.1016/S0898-8838(08)60173-7

    Article  CAS  Google Scholar 

  2. Mercier N, Louvain N, Bi W (2009) Structural diversity and retro-crystal engineering analysis of iodometalate hybrids. CrystEngComm 11:720–734. https://doi.org/10.1039/B817891G

    Article  CAS  Google Scholar 

  3. Wu L-M, Wu X-T, Chen L (2009) Structural overview and structure–property relationships of iodoplumbate and iodobismuthate. Coord Chem Rev 253:2787–2804. https://doi.org/10.1016/j.ccr.2009.08.003

    Article  CAS  Google Scholar 

  4. Adonin SA, Sokolov MN, Fedin VP (2016) Polynuclear halide complexes of Bi(III): From structural diversity to the new properties. Coord Chem Rev 312:1–21. https://doi.org/10.1016/j.ccr.2015.10.010

    Article  CAS  Google Scholar 

  5. Ahern JC, Fairchild R, Thomas JS, Carr J, Patterson HH (2015) Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl Catal B Environ 179:229–238. https://doi.org/10.1016/j.apcatb.2015.04.025

    Article  CAS  Google Scholar 

  6. Moyet MA, Kanan SM, Varney HM, Abu-Farha N, Gold DB, Lain WJ, Pike RD, Patterson HH (2019) Synthesis and characterization of (RPh3P)3[Bi3I12] (R = Me, Ph) iodobismuthate complexes for photocatalytic degradation of organic pollutants. Res Chem Intermed 45:5919–5933. https://doi.org/10.1007/s11164-019-04010-z

    Article  CAS  Google Scholar 

  7. Li M-Q, Hu Y-Q, Bi L-Y, Zhang H-L, Wang Y, Zheng Y-Z (2017) Structure tunable organic–inorganic bismuth halides for an enhanced two-dimensional lead-free light-harvesting material. Chem Mater 29:5463–5467

    Article  CAS  Google Scholar 

  8. García-Fernández A, Marcos-Cives I, Platas-Iglesias C, Castro-García S, Vázquez-García D, Fernández A, Sánchez-Andújar M (2018) Diimidazolium Halobismuthates [Dim]2[Bi2X10] (X = Cl, Br, or I) A new class of thermochromic and photoluminescent materials. Inorg Chem 57:7655–7664. https://doi.org/10.1021/acs.inorgchem.8b00629

    Article  CAS  PubMed  Google Scholar 

  9. Oswald IWH, Mozur EM, Moseley IP, Ahn H, Neilson JR (2019) Hybrid charge-transfer semiconductors: (C7H7)SbI4, (C7H7)BiI4, and their halide congeners. Inorg Chem 58:5818–5826. https://doi.org/10.1021/acs.inorgchem.9b00170

    Article  CAS  PubMed  Google Scholar 

  10. Dashitsyrenova DD, Adonin SA, Gorokh ID, Kraevaya OA, Pavlova AV, Abramov PA, Frolova LA, Sokolov MN, Fedin VP, Troshin PA (2020) Memory devices based on novel alkyl viologen halobismuthate(III) complexes. Chem Commun 56:9162–9165. https://doi.org/10.1039/D0CC03732J

    Article  CAS  Google Scholar 

  11. Wecławik M, Gagor A, Jakubas R, Piecha-Bisiorek A, Medycki W, Baran J (2016) Zieli´nski P, Gałazka M Structure–property relationships in hybrid (C3H5N2)3[Sb2I9] and (C3H5N2)3[Bi2I9] isomorphs. Inorg Chem Front 3:1306–1316. https://doi.org/10.1039/C6QI00260A

    Article  CAS  Google Scholar 

  12. Lehner AJ, Fabini DH, Evans HA, Hébert C-A, Smock SR, Hu J, Wang H, Zwanziger JW, Chabinyc ML, Seshadri R (2015) Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A = K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics. Chem Mater 27:7137–7148. https://doi.org/10.1021/acs.chemmater.5b03147

    Article  CAS  Google Scholar 

  13. Mitzi DB (2000) Organic−inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorg Chem 39:6107–6113. https://doi.org/10.1021/ic000794i

    Article  CAS  PubMed  Google Scholar 

  14. Owczarek M, Jakubas R, Pietraszko A, Medyckid W, Baran J (2013) Investigation of structure–properties relationship in a novel family of halogenoantimonates(III) andhalogenobismuthates(III) with morpholinium cation:[NH2(C2H4)2O]MX4. Crystal structure, phase transitionsand dynamics of molecules. Dalton Trans 42:15069–15079. https://doi.org/10.1039/c3dt51726h

    Article  CAS  PubMed  Google Scholar 

  15. Adonin SA, Rakhmanova ME, Samsonenko DG, Sokolov MN, Fedin VP (2015) Bi(III) halide complexes containing 4,4′-vinylenedipyridinium cation: Synthesis, structure and luminescence in solid state. Polyhedron 98:1–4. https://doi.org/10.1016/j.poly.2015.05.041

    Article  CAS  Google Scholar 

  16. Gągor A, Węcławik M, Bondzior B, Jakubas R (2015) Periodic and incommensurately modulated phases in a (2-methylimidazolium)tetraiodobismuthate(III) thermochromic organic–inorganic hybrid. CrystEngComm 17:3286–3296. https://doi.org/10.1039/C5CE00046G

    Article  CAS  Google Scholar 

  17. Adonin SA, Rakhmanova MI, Samsonenko DG, Sokolov MN, Fedin VP (2016) Hybrid salts of binuclear Bi(III) halide complexes with 1,2-bis(pyridinium)ethane cation: Synthesis, structure and luminescent behavior. Inorg Chim Acta 450:232–235. https://doi.org/10.1016/j.ica.2016.06.010

    Article  CAS  Google Scholar 

  18. Evans HA, Labram JG, Smock SR, Wu G, Chabinyc ML, Seshadri R, Wudl F (2017) Mono- and mixed-valence tetrathiafulvalene semiconductors (TTF)BiI4 and (TTF)4BiI6 with 1D and 0D bismuth-iodide networks. Inorg Chem 56:395–401. https://doi.org/10.1021/acs.inorgchem.6b02287

    Article  CAS  PubMed  Google Scholar 

  19. Adonin SA, Gorokh ID, Samsonenko DG, Antonova OV, Korolkov IV, Sokolov MN, Fedin VP (2018) Halobismuthates with bis(pyridinium)alkane cations: correlations in crystal structures and optical properties. Inorg Chim Acta 469:32–37. https://doi.org/10.1016/j.ica.2017.08.058

    Article  CAS  Google Scholar 

  20. Li T, Hu Y, Morrison CA, Wu W, Han H, Robertson N (2017) Lead-free pseudo-three-dimensional organic–inorganic iodobismuthates for photovoltaic applications. Sustainable Energy Fuels 1:308–316. https://doi.org/10.1039/C6SE00061D

    Article  CAS  Google Scholar 

  21. Pandey S, Chattopadhyay T, Dev S, Patil Y, Carpenter-Warren CL, Sinha C (2020) Influence of cations on optical properties of iodobismuthates. Polyhedron 179:114335. https://doi.org/10.1016/j.poly.2019.114335

    Article  CAS  Google Scholar 

  22. Usoltsev AN, Elshobaki M, Adonin SA, Frolova LA, Derzhavskaya T, Abramov PA, Anokhin DV, Korolkov IV, Luchkin SY, Dremova NN, Stevenson KJ, Sokolov MN, Fedin VP, Troshin PA (2019) Polymeric iodobismuthates [Bi3I10] and [BiI4] with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices. J Mater Chem A 7:5957–5966. https://doi.org/10.1039/C8TA09204D

    Article  CAS  Google Scholar 

  23. Skorokhod A, Hleli F, Hajlaoui F, Karoui K, Allain M, Zouari N, Mercier N (2021) Layered arrangement of 1D wavy chains in the lead-free hybrid perovskite (PyrCO2H)2BiI5: structural investigations and properties. Eur J Inorg Chem. https://doi.org/10.1002/ejic.202100011

    Article  Google Scholar 

  24. Adonin SA, Usoltsev AN, Novikov AS, Kolesov BA, Fedin VP, Sokolov MN (2020) One- and two-dmensional iodine-rich iodobismuthate(III) complexes: structure, optical properties, and features of halogen bonding in the solid state. Inorg Chem 59:3290–3296. https://doi.org/10.1021/acs.inorgchem.9b03734

    Article  CAS  PubMed  Google Scholar 

  25. Usoltsev AN, Korobeynikov NA, Novikov AS, Plyusnin PE, Kolesov BA, Fedin VP, Sokolov MN, Adonin SA (2020) One-dimensional diiodine–iodobismuthate(III) hybrids Cat3{[Bi2I9](I2)3}: syntheses, stability, and optical properties. Inorg Chem 59:17320–17325. https://doi.org/10.1021/acs.inorgchem.0c02599

    Article  CAS  PubMed  Google Scholar 

  26. Wheaton AM, Streep ME, Ohlhaver CM, Nicholas AD, Barnes FH, Patterson HH, Pike RD (2018) Alkyl pyridinium iodocuprate(I) clusters: structural types and charge transfer behavior. ACS Omega 3:15281–15292. https://doi.org/10.1021/acsomega.8b01986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. SAINT PLUS (2001) Bruker Analytical X-ray Systems: Madison WI

  28. SADABS (2001) Bruker Analytical X-ray Systems: Madison WI

  29. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71:3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  30. Hubschle CB, Sheldrick GM, Dittick B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Cryst 44:1281–1284. https://doi.org/10.1107/S0021889811043202

    Article  CAS  Google Scholar 

  31. Chai W-X, Wu L-M, Li J-Q, Chen L (2007) A series of new vopper iodobismuthates: structural relationships, optical band gaps affected by dimensionality, and distinct thermal stabilities. Inorg Chem 46:8698–8704. https://doi.org/10.1021/ic700904d

    Article  CAS  PubMed  Google Scholar 

  32. Sharutin VV, Yegorova IV, Klepikov NN, Boyarkina EA, Sharutina OK (2009) Synthesis and structure of bismuth complexes [Ph3MeP]+6[BiI3Br3]3−[Bi2I6Br3]3−·H2O2, [Ph3EtP]+3[Bi2I9]3−, [Ph3MeP]+3[Bi3I12]3−, [Ph3(iso-Pr)P]+3[Bi3I12]3−·2Me2C=O, and [Ph4Bi]+3[Bi5I18]3−. Russ J Inorg Chem 54:52–68. https://doi.org/10.1134/S0036023609010124

    Article  Google Scholar 

  33. Yan ZS, Long JY, Gong Y, Lin JH (2018) Three in situ-synthesized novel inorganic–organic hybrid materials based on metal (M = Bi, Pb) iodide and organoamine using one-pot reactions: structures, band gaps and optoelectronic properties. New J Chem 42:699–707. https://doi.org/10.1039/C7NJ02815F

    Article  CAS  Google Scholar 

  34. Johansson MB, Philippe B, Banerjee A, Phuyal D, Mukherjee S, Chakraborty S, Cameau M, Zhu H, Ahuja R, Boschloo G, Rensmo H, Johansson EMJ (2019) Cesium bismuth iodide solar cells from systematic molar ratio variation of CsI and BiI3. Inorg Chem 58:12040–12052. https://doi.org/10.1021/acs.inorgchem.9b01233

    Article  CAS  PubMed  Google Scholar 

  35. Hao P, Wang W, Shen J, Fu Y (2020) Non-transient thermo-/photochromism of iodobismuthate hybrids directed by solvated metal cations. Dalton Trans 49:1847–1853. https://doi.org/10.1039/c9dt04818a

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Tirani FF, Pattison P, Schenk-Joss K, Xiao Z, Nazeeruddin MK, Gao P (2020) Zero-dimensional hybrid iodobismuthate derivatives: from structure study to photovoltaic application. Dalton Trans 49:5815–5822. https://doi.org/10.1039/D0DT00015A

    Article  CAS  PubMed  Google Scholar 

  37. Szklarz P, Smiałkowski M, Bator G, Jakubas R, Cichos J, Karbowiak M, Medycki W, Baran J (2021) Phase transitions and properties of 0D hybrid iodoantimonate(III) and iodobismuthate(III) semiconducting ferroics: [C(NH2)3]3Bi2I9 and [C(NH2)3]3Sb2I9. J Molec Structure 1226B:129387. https://doi.org/10.1016/j.molstruc.2020.129387

    Article  CAS  Google Scholar 

  38. Geiser U, Wade E, Wang HH, Williams JM (1990) Structure of a new iodobismuthate: tetra(n-butyl)ammonium 1,2;1,2;1,2;2,3;2,3;2,3-hexa-μ-iodo-1,1,1,3,3,3-hexa­iodotribismuthate(III) (3:1). Acta Crystallogr Sect C 46:1547–1549. https://doi.org/10.1107/S0108270190003006

    Article  Google Scholar 

  39. Carmalt C, Farrugia LJ, Norman NC (1995) Structural Studies on some Iodoantimonate and Iodobismuthate Anions. Z Anorg Allg Chem 621:47–56. https://doi.org/10.1002/zaac.19956210110

    Article  CAS  Google Scholar 

  40. Okrut A, Feldmann C (2006) Ein neues cis-[Bi3I12]3−-Anion in Tri(n-butyl)methylammonium Dodecaiodotribismutat. Z Anorg Allg Chem 632:409–412. https://doi.org/10.1002/zaac.200500410

    Article  CAS  Google Scholar 

  41. Chen J, Chai W, Song L, Yang Y, Niu F (2011) A double salt of iodo­bis­muthate: cis-aqua­iodidobis(1,10-phenanthroline)cobalt(II) tris­(1,10-phenanthroline)cobalt(II) trans-hexa-μ2-iodido-hexa­iodidotribismuthate(III). Acta Crystallogr Sect E 67:m1284–m1285. https://doi.org/10.1107/S1600536811033460

    Article  CAS  Google Scholar 

  42. Mallick D, Sarker KK, Saha R, Mondal TK, Sinha C (2013) Intercalated iodobismuthate in the layers of azoimidazoles. Structure, photochromism and DFT computation. Polyhedron 54:147–157. https://doi.org/10.1016/j.poly.2013.01.061

    Article  CAS  Google Scholar 

  43. Adonin SA, Peresypkina EV, Sokolov MN, Fedin VP (2014) Trinuclear iodobismuthate complex [Na3(Me2CO)12][Bi3I12]: Synthesis and crystal structure. Russ J Coord Chem 40:867–870. https://doi.org/10.1134/S107032841412001X

    Article  CAS  Google Scholar 

  44. Adonin SA, Peresypkina EV, Sokolov MN, Fedin VP (2015) Iodobismuthate complex (Bu4N)3[Bi3I12]: Crystal structure of a new polymorph. J Struct Chem 56:795–799 https://doi.org/10.1134/S0022476615040307

    Article  CAS  Google Scholar 

  45. Chen Y, Yang Z, Guo C-X, Ni C-Y, Ren Z-G, Li H-X, Lang J-P (2010) Iodine-induced solvothermal formation of viologen iodobismuthates. Eur J Inorg Chem. https://doi.org/10.1002/ejic.201000755

    Article  Google Scholar 

  46. Ferjani H (2020) Structural, Hirshfeld surface analysis, morphological approach, and spectroscopic study of new hybrid iodobismuthate containing tetranuclear 0D cluster Bi4I16·4(C6H9N2) 2(H2O). Curr Comput-Aided Drug Des 10:397. https://doi.org/10.3390/cryst10050397

    Article  CAS  Google Scholar 

  47. Liu B, Xu L, Guo G-C, Huang J-S (2006) Three inorganic–organic hybrids of bismuth(III) iodide complexes containing substituted 1,2,4-triazole organic components with characterizations of diffuse reflectance spectra. J Solid State Chem 179:1611–1617. https://doi.org/10.1016/j.jssc.2006.02.011

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X-ray equipment was obtained with support from the NSF (CHE-0443345) and the College of William and Mary.

Funding

X-ray equipment was obtained with support from the NSF (CHE-0443345) and the College of William and Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Pike.

Ethics declarations

Conflict of interest

The authors certify no conflicts of interest of competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pike, R.D., Marshall, N.E. & Martucci, A.L. Alkylpyridinium lodobismuthates(III). J Chem Crystallogr 52, 161–173 (2022). https://doi.org/10.1007/s10870-021-00901-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00901-5

Keywords

Navigation