Skip to main content
Log in

Syntheses and Crystal Structures of Three Pyrrole-2-Carboxylate with C3-Symmetry

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The reaction of three equivalents of 2-(trifluoroacetyl)pyrrole with triols [RC(CH2OH)3, R=H, CH3, CH2OH] produce triesters of pyrrole-2-carboxylic acid (1–3, respectively) which crystallize in space groups with molecular C3 symmetry coinciding with the crystallographic symmetry (averaged in the case of R=CH2OH). All are unsolvated. Compound 1 crystallizes in space group P-3 and 2 and 3 in space group P-43n. In all three, molecules form three R22(10) Hydrogen-bonded interactions between syn pyrrole N-H and carboxyl C = O on neighboring molecules. In 1, molecules are linked into infinite chains and hexamolecular rings, and the cavity at the center of the rings (site symmetry − 3) is too small to harbor a guest molecule. In 2 and 3, supramolecular assemblies radiate from four molecules with methyl and hydroxymethyl groups at tetrahedral sites in the cubic structures. Computations confirm the importance of Hydrogen-bonding in these assemblies which add to the hundreds of similar pyrrole carboxylates previously described.

Graphic Abstract

Applications of the R22(10) hydrogen bond motif formed between two pyrrole-2-carboxylate moieties in the design of hydrogen bonded framework. Three tripodal pyrrole-2-carboxylate compounds were synthesized, and their structure were characterized by X-ray crystallography. The three compounds self-assembled into hexamer or cubic supramolecular structures. The relibility of the motif was also proved by DFT calculations and search in Cambridge Structural Database (CSD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Scheiner S (ed) (2015) Noncovalent forces, challenges and advances in computational chemistry and physics 19. Springer, Switzerland

    Google Scholar 

  2. Li Z-T, Wu L-Z (eds) (2015) Hydrogen bonded supramolecular structrues. Springer-Verlag, Berlin

    Google Scholar 

  3. Li P, Ryder MR, Stoddart JF (2020) Acc Mater Res 1:77–87

    Article  CAS  Google Scholar 

  4. Lin R-B, He Y, Li P, Wang H, Zhou W, Chen B (2019) Chem Soc Rev 48:1362–1389

    Article  CAS  Google Scholar 

  5. Han Y-F, Yuan Y-X, Wang H-B (2017) Molecules 22:266

    Article  Google Scholar 

  6. Hisaki I, Xin C, Takahashi K, Nakamura T (2019) Angew Chem Int Ed 58:11160–11170

    Article  CAS  Google Scholar 

  7. Suzuki Y, Tohnai N, Saeki A, Hisaki I (2020) Chem Commun 56:13369–13372

    Article  CAS  Google Scholar 

  8. Khadivjam T, Che-Quang H, Maris T, Ajoyan Z, Howarth AJ, Wuest JD (2020) Chem Eur J 26:7026–7040

    Article  CAS  Google Scholar 

  9. Wang B, Lv X-L, Lv J, Ma L, Lin R-B, Cui H, Zhang J, Zhang Z, Xiang S, Chen B (2020) Chem Commun 56:66–69

    Article  Google Scholar 

  10. Huang Q, Li W, Mao Z, Qu L, Li Y, Zhang H, Yu T, Zhao J, Zhang Y, Aldred MP, Chi Z (2019) Nat Commun 10:3074

    Article  Google Scholar 

  11. Long JR, Yaghi OM (2009) Chem Soc Rev 38:1213–1214

    Article  CAS  Google Scholar 

  12. Li J-R, Sculley J, Zhou H-C (2012) Chem Rev 112:869–932

    Article  CAS  Google Scholar 

  13. Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Fe´rey G, Morris RE, Serre C (2012) Chem Rev 112:1232–1268

    Article  CAS  Google Scholar 

  14. Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM (2013) Science 341:974–988

    Article  CAS  Google Scholar 

  15. Eddaoudi M, Sava DF, Eubank JF, Adil K, Guillerm V (2015) Chem Soc Rev 44:228–249

    Article  CAS  Google Scholar 

  16. Stassen I, Burtch N, Talin A, Falcaro P, Allendorf M, Ameloot R (2017) Chem Soc Rev 46:3185–3241

    Article  CAS  Google Scholar 

  17. Ding S-Y, Wang W (2013) Chem Soc Rev 42:548–568

    Article  CAS  Google Scholar 

  18. Geng K, He T, Liu R, Dalapati S, Tan KT, Li Z, Tao S, Gong Y, Jiang Q, Jiang D (2020) Chem Rev 120:8814–8933

    Article  CAS  Google Scholar 

  19. Sessler JL, Berthon-Gelloz G, Gale PA, Camiolo S, Anslyn EV, Anzenbacher P Jr, Furuta H, Kirkovits GJ, Lynch VM, Maeda H, Morosini P, Scherer M, Shriver J, Zimmerman RS (2003) Polyhedron 22:2963–2983

    Article  CAS  Google Scholar 

  20. Maeda H, Kusunose Y, Terasaki M, Ito Y, Fujimoto C, Fujii R, Nakanishi T (2007) Chem Asian J 2:350–357

    Article  CAS  Google Scholar 

  21. Figueira CA, Lopes PS, Gomes CSB, Veiros LF, Gomes PT (2015) CrystEngComm 17:6406–6419

    Article  CAS  Google Scholar 

  22. Yin Z, Li Z (2006) Tetrahedron Lett 47:7875–7879

    Article  CAS  Google Scholar 

  23. Cui Y, Yin Z, Dong L, He J (2009) J Mol Struct 938:322–327

    Article  CAS  Google Scholar 

  24. Jasper-Tonnies T, Gruber M, Ulrich S, Herges R, Berndt R (2020) Angew Chem Int Ed 59:7008–7017

    Article  Google Scholar 

  25. Hisaki I, Nakagawa S, Tohnai N, Miyata M (2015) Angew Chem Int Ed 54:3008–3012

    Article  CAS  Google Scholar 

  26. Li J, Tu B, Li X, Ma C, Chen C, Duan W, Xiao X, Zeng Q (2019) Chem Commun 55:11599–11602

    Article  CAS  Google Scholar 

  27. Sheldrick GM (1996) SADABS. University of Gottingen, Gottingen

    Google Scholar 

  28. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  29. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  30. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc, Wallingford CT

    Google Scholar 

  32. Houk KN, Menzer S, Newton SP, Raymo FM, Stoddart JF, Williams DJ (1999) J Am Chem Soc 121:1479–1487

    Article  CAS  Google Scholar 

  33. Sun S, Dong L, Guo J, Yin Z (2010) J Chem Crystallogr 40:1142–1145

    Article  CAS  Google Scholar 

  34. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  35. Spek AL (2003) J Appl Cryst 36:7–11

    Article  CAS  Google Scholar 

  36. Bondi A (1964) J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  37. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) Crystal Explorer 17. University of Western Australia, Perth

    Google Scholar 

  38. Dubis AT, Grabowski SJ (2002) New J Chem 26:165–169

    Article  CAS  Google Scholar 

  39. Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) Acta Cryst B72:171–179

    Google Scholar 

Download references

Acknowledgements

We sincerely thank the financial supports from the Natural Science Foundation of China (NSFC No. 21172174). We are indebted to Dr. Kun Liu, Department of Chemistry, Tianjin Normal University, for calculation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenming Yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yin, Z. Syntheses and Crystal Structures of Three Pyrrole-2-Carboxylate with C3-Symmetry. J Chem Crystallogr 52, 105–112 (2022). https://doi.org/10.1007/s10870-021-00894-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00894-1

Keywords

Navigation