Abstract
The synthesis and structure of a novel ortho-fluoroazobenzene, methyl 4-bromo-3-((2,6-difluorophenyl)diazenyl) benzoate is described. The title molecule crystallizes in the centrocemetric space group P-1 with two rotomer molecules of the title compound in the asymmetric unit. The position of ortho-fluoro azo rings differ between the two rotomers with one molecule having a rotation angle of 4.4° and the other molecule having a rotation angle of 76.9° with respect to the methyl 4-bromobenzoate. Due to the tight packing the pure molecule was not seen to be photoactive. However, in solution the absorption bands in the visible region show a separation of about 20 nm as expected for o-fluoroazobenzene. A comparison to related and previously published co-crystals of substituted azobenzenes are presented.
Graphic Abstract
The structure of a novel ortho-fluoroazobenzene, methyl 4-bromo-3-((2,6-difluorophenyl)diazenyl) benzoate reveals the presence of two crystallographically unique rotomers in the lattice, and although the molecule is photoactive in solution, the close-packed lattice appears to inhibit photo-induced structural reorganization in the crystalline state.

This is a preview of subscription content, access via your institution.










References
- 1.
Cole J (2018) Molecular engineering of crystalline nano-optomechanical transducers. Acta Crystallogr Sect A 74(a1):a213
- 2.
Patel DGD, Walton IM, Cox JM, Gleason CJ, Butzer DR, Benedict JB (2014) Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework. Chem Commun 50(20):2653–2656
- 3.
Zhang X, Chamberlayne CF, Kurimoto A, Frank NL, Harbron EJ (2016) Visible light photoswitching of conjugated polymer nanoparticle fluorescence. Chem Commun 52(22):4144–4147
- 4.
Tao Y, Chan HF, Shi B, Li M, Leong KW (2020) Light: a magical tool for controlled drug delivery. Adv Funct Mater 30(49):2005029
- 5.
Hao Y, Huang S, Guo Y, Zhou L, Hao H, Barrett CJ, Yu H (2019) Photoinduced multi-directional deformation of azobenzene molecular crystals. J Mater Chem C 7(3):503–508
- 6.
Walton IM, Cox JM, Mitchell TB, Bizier NP, Benedict JB (2016) Structural response to desolvation in a pyridyl-phenanthrene diarylethene-based metal-organic framework. CrystEngComm 18(41):7972–7977
- 7.
Shields DJ, Karothu DP, Sambath K, Ranaweera RAAU, Schramm S, Duncan A, Duncan B, Krause JA, Gudmundsdottir AD, Naumov P (2020) Cracking under internal pressure: photodynamic behavior of vinyl azide crystals through N2 release. J Am Chem Soc 142(43):18565–18575
- 8.
Zhu L, Al-Kaysi RO, Bardeen CJ (2016) Photoinduced ratchet-like rotational motion of branched molecular crystals. Angew Chem Int Ed 55(25):7073–7076
- 9.
Al-Kaysi RO, Tong F, Al-Haidar M, Zhu L, Bardeen CJ (2017) Highly branched photomechanical crystals. Chem Commun 53(17):2622–2625
- 10.
Naumov P, Sahoo SC, Zakharov BA, Boldyreva EV (2013) Dynamic single crystals: kinematic analysis of photoinduced crystal jumping (the photosalient effect). Angew Chem Int Ed 52(38):9990–9995
- 11.
Yu Q, Aguila B, Gao J, Xu P, Chen Q, Yan J, Xing D, Chen Y, Cheng P, Zhang Z, Ma S (2019) Photomechanical organic crystals as smart materials for advanced applications. Chemistry 25(22):5611–5622
- 12.
Fujino T, Tahara T (2000) Picosecond time-resolved raman study of trans-Azobenzene. J Phys Chem A 104:4203–4210
- 13.
Yui N, Mrsny RJ, Park K (2004) Reflexive polymers and hydrogels. CRC Press, Boca Raton
- 14.
Walton IM, Cox JM, Benson CA, Patel DG, Chen YS, Benedict JB (2016) The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal-organic frameworks. New J Chem 40(1):101–106
- 15.
Otsuki J, Suwa K, Narutaki K, Sinha C, Yoshikawa I, Araki K (2005) Photochromism of 2-(Phenylazo) imidazoles. J Phys Chem A 109:8064–8069
- 16.
Otsuki J, Suwa K, Sarker KK, Sinha C (2007) Photoisomerization and thermal isomerization of arylazoimidazoles. J Phys Chem A 111:1403–1409
- 17.
Caddy JS, Faust TB, Walton IM, Cox JM, Benedict JB, Solomon MB, Southon PD, Kepert CJ, D’Alessandro DM (2017) Photoactive and physical properties of an azobenzene-containing coordination framework. Aust J Chem 70(11):1171–1179
- 18.
Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422
- 19.
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A (2012) Light-controlled tools. Angew Chem Int Ed 51:8446
- 20.
Wegner HA (2012) Azobenzenes in a new light—switching in vivo. Angew Chem Int Ed 51:4787
- 21.
Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc 134(51):20597–20600
- 22.
Moneo A, Justino GC, Carvalho MF, Oliveira MC, Antunes AM, Bléger D, Hecht S, Telo JP (2013) Electronic communication in linear oligo(azobenzene) radical anions. J Phys Chem A 117:14056–14064
- 23.
Hoffmann R (1971) Interaction of orbitals through space and through bonds. ACC Chem Res 4(1):1–9
- 24.
Bleger D, Schwarz J, Brouwer AM, Hecht S (2012) o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. Am Chem Soc 134:20597–20600
- 25.
Cusati T, Granucci G, Martínez-Núnez E, Martini F, Persico M, Vázquez S (2012) Semiempirical hamiltonian for simulation of azobenzene photochemistry. J Phys Chem A 116:98–110
- 26.
Gullo MC, Baldini L, Casnati A, Marchiò L (2020) Halogen bonds direct the solid state architectures of a multivalent Iodopropargylcalix[4]arene. Cryst Growth Des 20(6):3611–3616
- 27.
Le HT, Wang C-G, Goto A (2020) Solid-phase radical polymerization of halogen-bond-based crystals and applications to pre-shaped polymer materials. Angew Chem Int Ed 59(24):9360
- 28.
Juneja N, Unruh DK, Bosch E, Groeneman RH, Hutchins KM (2019) Effects of dynamic pedal motion and static disorder on thermal expansion within halogen-bonded co-crystals. New J Chem 43(47):18433–18436
- 29.
Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341
- 30.
Sheldrick G (2008) A short history of SHELX. Acta Crystallogr Sect A 64(1):112–122
- 31.
Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr Sect A 71(1):59–75
- 32.
Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B 72(2):171–179
- 33.
Walter SM, Jungbauer SH, Kniep F, Schindler S, Herdtweck E, Huber SM (2013) Polyfluorinated versus cationic multidentate halogen-bond donors: a direct comparison. J Fluorine Chem 150:14–20
- 34.
Graeber EJ, Morosin B (1974) The crystal structures of 2,2’,4,4’,6,6’-hexanitroazobenzene (HNAB), forms I and II. Acta Crystallogr Sect B 30(2):310–317
- 35.
Gabe EJ, Wang Y, Le Page Y (1981) 6,6’-Dibromo-2,2’,4,4’-tetra-tert-butylazobenzene. Acta Crystallogr Sect B 37(4):980–981
- 36.
Tao T, Wang Y-G, Dai Y, Qian H-F, Huang W (2015) Structure–performance relationship for a family of disperse azo dyes having the same D–π–A 4-nitro-4′-amino-azobenzene skeleton: structures, solvatochromism and DFT computations. Spectrochim Acta Part A 136:1001–1009
- 37.
Desiraju GR, Parthasarathy R (1989) The nature of halogen…halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms. J Am Chem Soc 111(23):8725–8726
- 38.
Tothadi S, Joseph S, Desiraju GR (2013) Synthon modularity in cocrystals of 4-bromobenzamide with n-alkanedicarboxylic acids: type I and type II Halogen···Halogen interactions. Cryst Growth Des 13(7):3242–3254
- 39.
Karanam M, Choudhury AR (2013) Study of halogen-mediated weak interactions in a series of halogen-substituted azobenzenes. Cryst Growth Des 13(11):4803–4814
- 40.
Gahl C, Schmidt R, Brete D, McNellis ER, Freyer W, Carley R, Reuter K, Weinelt M (2010) Structure and excitonic coupling in self-assembled monolayers of azobenzene-functionalized alkanethiols. J Am Chem Soc 132(6):1831–1838
- 41.
Utecht M, Klamroth T, Saalfrank P (2011) Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers: a study based on density functional theory. Phys Chem Chem Phys 13(48):21608–21614
Acknowledgements
We would like to thank Travis Mitchell for helpful discussions.
Funding
Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (Award No. DMR-2003932)
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Sylvester, E.D., Benedict, J.B. Synthesis and Characterization of Photoactive Methyl 4-Bromo-3-((2,6-Difluorophenyl)diazenyl) Benzoate. J Chem Crystallogr (2021). https://doi.org/10.1007/s10870-021-00881-6
Received:
Accepted:
Published:
Keywords
- Crystal structure
- Photochrome
- Ortho-fluoroazobenzene
- Azobenzene
- Twisted-confirmation