Synthesis and Characterization of Photoactive Methyl 4-Bromo-3-((2,6-Difluorophenyl)diazenyl) Benzoate

Abstract

The synthesis and structure of a novel ortho-fluoroazobenzene, methyl 4-bromo-3-((2,6-difluorophenyl)diazenyl) benzoate is described. The title molecule crystallizes in the centrocemetric space group P-1 with two rotomer molecules of the title compound in the asymmetric unit. The position of ortho-fluoro azo rings differ between the two rotomers with one molecule having a rotation angle of 4.4° and the other molecule having a rotation angle of 76.9° with respect to the methyl 4-bromobenzoate. Due to the tight packing the pure molecule was not seen to be photoactive. However, in solution the absorption bands in the visible region show a separation of about 20 nm as expected for o-fluoroazobenzene. A comparison to related and previously published co-crystals of substituted azobenzenes are presented.

Graphic Abstract

The structure of a novel ortho-fluoroazobenzene, methyl 4-bromo-3-((2,6-difluorophenyl)diazenyl) benzoate reveals the presence of two crystallographically unique rotomers in the lattice, and although the molecule is photoactive in solution, the close-packed lattice appears to inhibit photo-induced structural reorganization in the crystalline state.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Cole J (2018) Molecular engineering of crystalline nano-optomechanical transducers. Acta Crystallogr Sect A 74(a1):a213

    Article  Google Scholar 

  2. 2.

    Patel DGD, Walton IM, Cox JM, Gleason CJ, Butzer DR, Benedict JB (2014) Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal-organic framework. Chem Commun 50(20):2653–2656

    CAS  Article  Google Scholar 

  3. 3.

    Zhang X, Chamberlayne CF, Kurimoto A, Frank NL, Harbron EJ (2016) Visible light photoswitching of conjugated polymer nanoparticle fluorescence. Chem Commun 52(22):4144–4147

    CAS  Article  Google Scholar 

  4. 4.

    Tao Y, Chan HF, Shi B, Li M, Leong KW (2020) Light: a magical tool for controlled drug delivery. Adv Funct Mater 30(49):2005029

    CAS  Article  Google Scholar 

  5. 5.

    Hao Y, Huang S, Guo Y, Zhou L, Hao H, Barrett CJ, Yu H (2019) Photoinduced multi-directional deformation of azobenzene molecular crystals. J Mater Chem C 7(3):503–508

    CAS  Article  Google Scholar 

  6. 6.

    Walton IM, Cox JM, Mitchell TB, Bizier NP, Benedict JB (2016) Structural response to desolvation in a pyridyl-phenanthrene diarylethene-based metal-organic framework. CrystEngComm 18(41):7972–7977

    CAS  Article  Google Scholar 

  7. 7.

    Shields DJ, Karothu DP, Sambath K, Ranaweera RAAU, Schramm S, Duncan A, Duncan B, Krause JA, Gudmundsdottir AD, Naumov P (2020) Cracking under internal pressure: photodynamic behavior of vinyl azide crystals through N2 release. J Am Chem Soc 142(43):18565–18575

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Zhu L, Al-Kaysi RO, Bardeen CJ (2016) Photoinduced ratchet-like rotational motion of branched molecular crystals. Angew Chem Int Ed 55(25):7073–7076

    CAS  Article  Google Scholar 

  9. 9.

    Al-Kaysi RO, Tong F, Al-Haidar M, Zhu L, Bardeen CJ (2017) Highly branched photomechanical crystals. Chem Commun 53(17):2622–2625

    CAS  Article  Google Scholar 

  10. 10.

    Naumov P, Sahoo SC, Zakharov BA, Boldyreva EV (2013) Dynamic single crystals: kinematic analysis of photoinduced crystal jumping (the photosalient effect). Angew Chem Int Ed 52(38):9990–9995

    CAS  Article  Google Scholar 

  11. 11.

    Yu Q, Aguila B, Gao J, Xu P, Chen Q, Yan J, Xing D, Chen Y, Cheng P, Zhang Z, Ma S (2019) Photomechanical organic crystals as smart materials for advanced applications. Chemistry 25(22):5611–5622

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Fujino T, Tahara T (2000) Picosecond time-resolved raman study of trans-Azobenzene. J Phys Chem A 104:4203–4210

    CAS  Article  Google Scholar 

  13. 13.

    Yui N, Mrsny RJ, Park K (2004) Reflexive polymers and hydrogels. CRC Press, Boca Raton

    Google Scholar 

  14. 14.

    Walton IM, Cox JM, Benson CA, Patel DG, Chen YS, Benedict JB (2016) The role of atropisomers on the photo-reactivity and fatigue of diarylethene-based metal-organic frameworks. New J Chem 40(1):101–106

    CAS  Article  Google Scholar 

  15. 15.

    Otsuki J, Suwa K, Narutaki K, Sinha C, Yoshikawa I, Araki K (2005) Photochromism of 2-(Phenylazo) imidazoles. J Phys Chem A 109:8064–8069

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Otsuki J, Suwa K, Sarker KK, Sinha C (2007) Photoisomerization and thermal isomerization of arylazoimidazoles. J Phys Chem A 111:1403–1409

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Caddy JS, Faust TB, Walton IM, Cox JM, Benedict JB, Solomon MB, Southon PD, Kepert CJ, D’Alessandro DM (2017) Photoactive and physical properties of an azobenzene-containing coordination framework. Aust J Chem 70(11):1171–1179

    CAS  Article  Google Scholar 

  18. 18.

    Beharry AA, Woolley GA (2011) Azobenzene photoswitches for biomolecules. Chem Soc Rev 40:4422

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A (2012) Light-controlled tools. Angew Chem Int Ed 51:8446

    CAS  Article  Google Scholar 

  20. 20.

    Wegner HA (2012) Azobenzenes in a new light—switching in vivo. Angew Chem Int Ed 51:4787

    CAS  Article  Google Scholar 

  21. 21.

    Bléger D, Schwarz J, Brouwer AM, Hecht S (2012) o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. J Am Chem Soc 134(51):20597–20600

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  22. 22.

    Moneo A, Justino GC, Carvalho MF, Oliveira MC, Antunes AM, Bléger D, Hecht S, Telo JP (2013) Electronic communication in linear oligo(azobenzene) radical anions. J Phys Chem A 117:14056–14064

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Hoffmann R (1971) Interaction of orbitals through space and through bonds. ACC Chem Res 4(1):1–9

    CAS  Article  Google Scholar 

  24. 24.

    Bleger D, Schwarz J, Brouwer AM, Hecht S (2012) o-Fluoroazobenzenes as readily synthesized photoswitches offering nearly quantitative two-way isomerization with visible light. Am Chem Soc 134:20597–20600

    CAS  Article  Google Scholar 

  25. 25.

    Cusati T, Granucci G, Martínez-Núnez E, Martini F, Persico M, Vázquez S (2012) Semiempirical hamiltonian for simulation of azobenzene photochemistry. J Phys Chem A 116:98–110

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Gullo MC, Baldini L, Casnati A, Marchiò L (2020) Halogen bonds direct the solid state architectures of a multivalent Iodopropargylcalix[4]arene. Cryst Growth Des 20(6):3611–3616

    CAS  Article  Google Scholar 

  27. 27.

    Le HT, Wang C-G, Goto A (2020) Solid-phase radical polymerization of halogen-bond-based crystals and applications to pre-shaped polymer materials. Angew Chem Int Ed 59(24):9360

    CAS  Article  Google Scholar 

  28. 28.

    Juneja N, Unruh DK, Bosch E, Groeneman RH, Hutchins KM (2019) Effects of dynamic pedal motion and static disorder on thermal expansion within halogen-bonded co-crystals. New J Chem 43(47):18433–18436

    CAS  Article  Google Scholar 

  29. 29.

    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341

    CAS  Article  Google Scholar 

  30. 30.

    Sheldrick G (2008) A short history of SHELX. Acta Crystallogr Sect A 64(1):112–122

    CAS  Article  Google Scholar 

  31. 31.

    Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment—Olex2 dissected. Acta Crystallogr Sect A 71(1):59–75

    CAS  Article  Google Scholar 

  32. 32.

    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B 72(2):171–179

    CAS  Article  Google Scholar 

  33. 33.

    Walter SM, Jungbauer SH, Kniep F, Schindler S, Herdtweck E, Huber SM (2013) Polyfluorinated versus cationic multidentate halogen-bond donors: a direct comparison. J Fluorine Chem 150:14–20

    CAS  Article  Google Scholar 

  34. 34.

    Graeber EJ, Morosin B (1974) The crystal structures of 2,2’,4,4’,6,6’-hexanitroazobenzene (HNAB), forms I and II. Acta Crystallogr Sect B 30(2):310–317

    CAS  Article  Google Scholar 

  35. 35.

    Gabe EJ, Wang Y, Le Page Y (1981) 6,6’-Dibromo-2,2’,4,4’-tetra-tert-butylazobenzene. Acta Crystallogr Sect B 37(4):980–981

    Article  Google Scholar 

  36. 36.

    Tao T, Wang Y-G, Dai Y, Qian H-F, Huang W (2015) Structure–performance relationship for a family of disperse azo dyes having the same D–π–A 4-nitro-4′-amino-azobenzene skeleton: structures, solvatochromism and DFT computations. Spectrochim Acta Part A 136:1001–1009

    CAS  Article  Google Scholar 

  37. 37.

    Desiraju GR, Parthasarathy R (1989) The nature of halogen…halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms. J Am Chem Soc 111(23):8725–8726

    CAS  Article  Google Scholar 

  38. 38.

    Tothadi S, Joseph S, Desiraju GR (2013) Synthon modularity in cocrystals of 4-bromobenzamide with n-alkanedicarboxylic acids: type I and type II Halogen···Halogen interactions. Cryst Growth Des 13(7):3242–3254

    CAS  Article  Google Scholar 

  39. 39.

    Karanam M, Choudhury AR (2013) Study of halogen-mediated weak interactions in a series of halogen-substituted azobenzenes. Cryst Growth Des 13(11):4803–4814

    CAS  Article  Google Scholar 

  40. 40.

    Gahl C, Schmidt R, Brete D, McNellis ER, Freyer W, Carley R, Reuter K, Weinelt M (2010) Structure and excitonic coupling in self-assembled monolayers of azobenzene-functionalized alkanethiols. J Am Chem Soc 132(6):1831–1838

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Utecht M, Klamroth T, Saalfrank P (2011) Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers: a study based on density functional theory. Phys Chem Chem Phys 13(48):21608–21614

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Travis Mitchell for helpful discussions.

Funding

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (Award No. DMR-2003932)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jason B. Benedict.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sylvester, E.D., Benedict, J.B. Synthesis and Characterization of Photoactive Methyl 4-Bromo-3-((2,6-Difluorophenyl)diazenyl) Benzoate. J Chem Crystallogr (2021). https://doi.org/10.1007/s10870-021-00881-6

Download citation

Keywords

  • Crystal structure
  • Photochrome
  • Ortho-fluoroazobenzene
  • Azobenzene
  • Twisted-confirmation