Syntheses and Crystal Structures of a Series of Dysprosium–Manganese–Sodium 12-Metallacrown-4 Compounds with Halogenated Benzoate Bridging Anions

Abstract

A series of heterotrimetallic dysprosium–manganese–sodium 12-metallacrown-4 compounds has been synthesized and characterized by single-crystal X-ray analysis: DyNaX4[12-MCMn(III)N(shi)-4], where X = 2-fluorobenzoate (1), 3-fluorobenzoate (2), 4-fluorobenzoate (3), 2-chlorobenzoate (4), 4-chlorobenzoate (5), 3-bromobenzoate (6), and 2-iodobenzoate (7); MC is metallacrown; and shi3− is salicylhydroximate. Each 12-MC-4 framework is comprised of four ring MnIII ions and four shi3− ligands. The oxime oxygen atoms of the shi3− ligands produce a central cavity which then binds one DyIII ion and one Na+ ion on opposite sides. In each molecule four halogenated benzoate anions bridge between the central DyIII ion and the ring MnIII ions via the carboxylate groups. The identity of the halogenated benzoate anion has little effect on the structure of the [12-MCMn(III)N(shi)-4] framework as determined by several metrical parameters: the MC cavity radius, the average cross cavity MnIII–MnIII distance, the average cross cavity oxime oxygen-oxime oxygen distance, and the distance of the DyIII from the oxime oxygen mean plane. For 17 these metrical parameters are strikingly similar; thus, providing further reinforcement of one hallmark of metallacrown chemistry—the ability to substitute various components of the molecule without affecting the overall structure which can be used for the fine-tuning of molecular properties.

Graphic Abstract

Four 4-fluorobenzoate (4-Fben) anions bridge between the central DyIII ion and the ring MnIII ions in the metallacrown compound DyNa(4-Fben)4[12-MCMn(III)N(shi)-4](H2O)4·4DMF.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of Data and Materials

CCDC 2032652-2032658 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via https://www.ccdc.cam.ac.uk/structures/.

References

  1. 1.

    Han H, Wei Z, Filatov AS, Carozza JC, Alkan M, Rogachev AY, Shevtsov A, Abakumov AM, Pak C, Shatruk M, Chen Y-S, Dikarev EV (2019) Three to tango requires a site-specific substitution: heterotrimetallic molecular precursors for high-voltage rechargeable batteries. Chem Sci 10:524–534

    CAS  Article  Google Scholar 

  2. 2.

    Andruh M (2018) Hetereotrimetallic complexes in molecular magnetism. Chem Commun 54:3559–3577

    CAS  Article  Google Scholar 

  3. 3.

    Chang X-Y, Xu G-T, Cao B, Wang J-Y, Huang J-S, Che C-M (2017) Assembly of strongly phosphorescent hetero-bimetallic and trimetallic [2]catenane structures based on a coinage metal alkynyl system. Chem Sci 8:7815–7820

    CAS  Article  Google Scholar 

  4. 4.

    Kuwamura N, Kurioka Y, Konno T (2017) A platinum(II)-palladium(II)-nickel(II) heterotrimetallic coordination polymer showing a cooperative effect on catalytic hydrogen evolution. Chem Commun 53:846–849

    CAS  Article  Google Scholar 

  5. 5.

    Cook TR, Stang PJ (2015) Recent developments in the preparation and chemistry of metallacycles and metallacages via coordination. Chem Rev 115:7001–7045

    CAS  Article  Google Scholar 

  6. 6.

    Mezei G, Zaleski CM, Pecoraro VL (2007) Structural and functional evolution of metallacrowns. Chem Rev 107:4933–5003

    CAS  Article  Google Scholar 

  7. 7.

    Lah MS, Pecoraro VL (1991) A functional analogy between crown ethers and metallacrowns. Inorg Chem 30:878–880

    CAS  Article  Google Scholar 

  8. 8.

    Azar MR, Boron TT III, Lutter JC, Daly CI, Zegalia KA, Nimthong R, Ferrence GM, Zeller M, Kampf JW, Pecoraro VL, Zaleski CM (2014) Controllable formation of heterotrimetallic coordination compounds—systematically incorporating lanthanide and alkali metal ions into the manganese 12-metallacrown-4 framework. Inorg Chem 53:1729–1742

    CAS  Article  Google Scholar 

  9. 9.

    Chow CY, Eliseeva SV, Trivedi ER, Nguyen TN, Kampf JW, Petoud S, Pecoraro VL (2016) Ga3+/Ln3+ metallacrowns: a promising family of highly luminescent lanthanide complexes that covers visible and near-infrared domains. J Am Chem Soc 138:5100–5109

    CAS  Article  Google Scholar 

  10. 10.

    Travis JR, Smihosky AM, Kauffman AC, Ramstrom SE, Lewis AJ, Nagy SG, Rheam RE, Zeller M, Zaleski CM (2020) Syntheses and crystal structures of two classes of aluminum-lanthanide-sodium heterotrimetallic 12-metallacrown-4 compounds: individual molecules and dimers of metallacrowns. J Chem Crystallogr. https://doi.org/10.1007/s10870-020-00861-2

    Article  Google Scholar 

  11. 11.

    Travis JR, Zeller M, Zaleski CM (2015) Crystal structure of tetraaqua(dimethylformamide) tetrakis(μ-N,2-dioxidobenzene-1-carboximidato)tetrakis(μ-trimethylacetato)tetramanganese(III)sodiumyttrium–dimethylformamide–water (1/8.04/0.62). Acta Cryst E 71:1300–1306

    CAS  Article  Google Scholar 

  12. 12.

    Travis JR, Zeller M, Zaleski CM (2016) Facile carboxylate ligand variation of heterotrimetallic 12-metallacrown-4 complexes. Polyhedron 114:29–36

    CAS  Article  Google Scholar 

  13. 13.

    Boron TT III, Lutter JC, Daly CI, Chow CY, Davis AH, Nimthong-Roldán A, Zeller M, Kampf JW, Zaleski CM, Pecoraro VL (2016) The nature of the bridging anion controls the single-molecule magnetic properties of DyX4M 12-metallacrown-4 complexes. Inorg Chem 55:10597–10607

    CAS  Article  Google Scholar 

  14. 14.

    Manickas EC, Zeller M, Zaleski CM (2020) Crystal structure of two heterotrimetallic dysprosium-manganese-sodium 12-metallacrown-4 complexes with the bridging ligands 3-hydroxybenzoate and 4-hydroxybenzoate. Acta Cryst E 76:1213–1221

    CAS  Article  Google Scholar 

  15. 15.

    Bruker Apex3 and SAINT. Bruker AXS Inc., Madison, WI

  16. 16.

    Krause L, Herbst-Irmer R, Sheldrick GM, Stalke D (2015) Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J Appl Cryst 48:3–10

    CAS  Article  Google Scholar 

  17. 17.

    Sheldrick GM (2012) TWINABS. University of Göttingen, Germany

    Google Scholar 

  18. 18.

    SHELXTL suite of programs, Version 6.14, 2000–2003, Bruker advanced X-ray solutions, Bruker AXS Inc., Madison, Wisconsin, USA

  19. 19.

    Sheldrick GM (2008) A Short History of SHELX. Acta Cryst A 64:112–122

    CAS  Article  Google Scholar 

  20. 20.

    Sheldrick GM (2018) SHELXL2018. University of Göttingen, Germany

    Google Scholar 

  21. 21.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

    Article  Google Scholar 

  22. 22.

    Hübschle CB, Sheldrick GM, Dittrich B (2011) ShelXle: a Qt graphical user interface for SHELXL. J Appl Cryst 44:1281–1284

    Article  Google Scholar 

  23. 23.

    van der Sluis P, Spek AL (1990) BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions. Acta Cryst A 46:194–201

    Article  Google Scholar 

  24. 24.

    Spek AL (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst C 71:9–18

    CAS  Article  Google Scholar 

  25. 25.

    Liu W, Thorp HH (1993) Bond valence sum analysis of metal-ligand bond lengths in metalloenzymes and model complexes. 2. Refined distances and other enzymes. Inorg Chem 32:4102–4105

    CAS  Article  Google Scholar 

  26. 26.

    Trzesowska A, Kruszynski R, Bartczak TJ (2004) New bond-valence parameters for lanthanides. Acta Cryst B 60:174–178

    Article  Google Scholar 

  27. 27.

    Alvarez S, Avnir D, Llunell M, Pinksy M (2002) Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds. New J Chem 26:996–1009

    CAS  Article  Google Scholar 

  28. 28.

    Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S (2013) SHAPE, version 2.1. Barcelona, Spain

  29. 29.

    Pinksy M, Avnir D (1998) Continuous symmetry measures. 5. The classical polyhedra. Inorg Chem 37:5575–5582

    Article  Google Scholar 

  30. 30.

    Casanova D, Cirera J, Llunell M, Alemany P, Avnir D, Alvarez S (2004) Minimal distortion pathways in polyhedral rearrangements. J Am Chem Soc 126:1755–1763

    CAS  Article  Google Scholar 

  31. 31.

    Cirera J, Ruiz E, Alvarez S (2005) Continuous shape measures as a stereochemical tool in organometallic chemistry. Organometallics 24:1556–1562

    CAS  Article  Google Scholar 

  32. 32.

    Casanova D, Llunell M, Alemany P, Alvarez S (2005) The rich stereochemistry of eight-vertex polyhedra: a continuous shape measures study. Chem Eur J 11:1479–1494

    CAS  Article  Google Scholar 

  33. 33.

    Ruiz-Martínez A, Casanova D, Alvarez S (2008) Polyhedral structure with an odd number of vertices: nine-atom clusters and supramolecular architectures. Dalton Trans 2583–2591

  34. 34.

    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Crystallogr 39:453–457

    CAS  Article  Google Scholar 

  35. 35.

    Haynes WM (2010) CRC handbook of chemistry and physics, 91st edn. CRC Press, Boca Raton, FL, pp 8–42–8–51

    Google Scholar 

Download references

Funding

This work was funded by the Shippensburg University College of Arts & Sciences Faculty-Led Research Fund to CMZ. The Bruker AXS D8 Quest CMOS X-ray diffractometers were funded by the National Science Foundation through the Major Research Instrumentation Program under Grants No. CHE 1625543 to MZ.

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by CHM, MZ, and CMZ. The first draft of the manuscript was written by CMZ and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Curtis M. Zaleski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michael, C.H., Zeller, M. & Zaleski, C.M. Syntheses and Crystal Structures of a Series of Dysprosium–Manganese–Sodium 12-Metallacrown-4 Compounds with Halogenated Benzoate Bridging Anions. J Chem Crystallogr (2021). https://doi.org/10.1007/s10870-021-00880-7

Download citation

Keywords

  • Metallacrown
  • Manganese
  • Dysprosium
  • Heterotrimetallic