Study of the Anticancer Activity of a New Nanosize Bismuth(V)-Based Coordination Complex Against Human Bone Tumor Cells


Herein we report a new bismuth(V)-based coordination complex Bi(phenyl)3(2,5-dfa)2 (1) that has been successfully prepared by using C donor phenyl ring and O donor 2,5-difluorobenzoic acid (2,5-H2dfa) ligands. The coordination complex has been comprehensively characterized by single crystal X-ray diffraction, Powder X-ray diffraction and thermogravimetric analysis. Finally, an evaluation of cytotoxicity against human OS-732 bone tumor cell lines for the synthesized nanoparticles was performed.

Graphic Abstract

A new bismuth(V)-based coordination complex Bi(phenyl)3(2,5-dfa)2 (1) has been successfully prepared and evaluation of cytotoxicity against human OS-732 bone tumor cell lines for its related nanoparticles was performed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Dyson PJ, Sava G (2006) Metal-based antitumour drugs in the post genomic era. Dalton Trans 47:1929–1933

    Article  Google Scholar 

  2. 2.

    Ali BH, Al Moundhri MS (2006) Agents ameliorating or augmenting the nephrotoxicity of cisplatin and other platinum compounds: a review of some recent research. Food Chem Toxicol 44:1173–1183

    CAS  Article  Google Scholar 

  3. 3.

    Tisato F, Marzano C, Porchia M, Pellei M, Santini C (2009) Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev 44:708–749

    Google Scholar 

  4. 4.

    Marzano C, Pellei M, Tisato F, Santini C (2009) Copper complexes as anticancer agents. Anticancer Agents Med Chem 9:185–211

    CAS  Article  Google Scholar 

  5. 5.

    Duan C, Dong L, Li F, Xie Y, Huang B, Wang K, Yu Y, Xi H (2020) Room-temperature rapid synthesis of two-dimensional metal–organic framework nanosheets with tunable hierarchical porosity for enhanced adsorption desulfurization performance. Ind Eng Chem Res 59:18857–18864

    CAS  Article  Google Scholar 

  6. 6.

    Yu FK, Chen Y, Pan YW, Yang Y, Ma HR (2020) A cost-effective production of hydrogen peroxide via improved mass transfer of oxygen for electro-Fenton process using the vertical flow reactor. Sep Purif Technol 241:116695

    CAS  Article  Google Scholar 

  7. 7.

    Sadeghi N, Ghiasi R, Jamehbozorgi S (2018) A Computational approach for hydrolysis of the third-generation anticancer drug: trans-platinum (II) complex of 3-aminoflavone. J Struct Chem 59:1791–1796

    CAS  Article  Google Scholar 

  8. 8.

    Rezazadeh M, Ghiasi R, Jamehbozorgi S (2018) Solvent effects on the structure and spectroscopic properties of the second-generation anticancer drug carboplatin: a theoretical insight. J Struct Chem 59:245–251

    CAS  Article  Google Scholar 

  9. 9.

    Yousefi M, Safari M, Torbati MB, Amanzadeh A (2014) In vitro anti-proliferative activity of novel hexacoordinated triphenyltin(IV) trifluoroacetate containing a bidentate N-donor ligand. J Struct Chem 55:101–106

    CAS  Article  Google Scholar 

  10. 10.

    Cui L, Bi C, Fan Y, Li X, Meng X, Zhang N, Zhang Z (2015) Synthesis, crystal structures, DNA interaction and anticancer activity of organobismuth(V) complexes. Inorg Chim Acta 437:41

    CAS  Article  Google Scholar 

  11. 11.

    Islam A, Rodrigues BL, Marzano IM (2016) Cytotoxicity and apoptotic activity of novel organobismuth(V) and organoantimony(V) complexes in different cancer cell lines. Eur J Med Chem 109:254–267

    CAS  Article  Google Scholar 

  12. 12.

    Wu H, Chi F, Zhang S, Wen J, Xiong J, Hu S (2019) Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater. Micropor Mesopor Mater 288:109567

    CAS  Article  Google Scholar 

  13. 13.

    SAINT+ (version 6.02). Program for reduction of data collected on Bruker CCD area detector diffractometer. 1999.

  14. 14.

    Sheldrick GM (2015) SHELXT-integrated space-group and crystal-structure determination. Acta Cryst A 71:3–8

    Article  Google Scholar 

  15. 15.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Cryst C 71:3–8

    Article  Google Scholar 

  16. 16.

    Jiang N, Liu Y, Yu XN, Zhang HB, Wang MM (2020) Corrosion resistance of nickel-phosphorus/nano-ZnO composite multilayer coating electrodeposited on carbon steel in acidic chloride environments. Int J Electrochem Sci 15:5520–5528

    CAS  Article  Google Scholar 

  17. 17.

    Yu FK, Wang Y, Ma HR, Zhou MH (2020) Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe(II)/Fe(III) cycle. Sep Purif Technol 248:117022

    CAS  Article  Google Scholar 

  18. 18.

    Zhao J, Zhang J, Zhang D, Hu Z, Sun Y (2021) Effect of emerging pollutant fluoxetine on the excess sludge anaerobic digestion. Sci Total Environ 752:141932

    CAS  Article  Google Scholar 

  19. 19.

    Kumar I, Bhattacharya P, Whitmire KH (2014) Facile one-pot synthesis of triphenylbismuth(V) bis(carboxylate) complexes. Organometallics 33:2906–2909

    CAS  Article  Google Scholar 

  20. 20.

    Zhang XY, Wu RX, Bi CF, Zhang X, Fan YH (2018) A new organobismuth (V) complex with fluorobenzoic ligands: synthesis, crystal structure, photodegradation properties. Inorg Chim Acta 483:129–135

    CAS  Article  Google Scholar 

  21. 21.

    Andleeb S, Imtiaz-ud-Din RMK, Azam SS, Haq I, Tahir MN, Ahmad S (2019) Bioactive heteroleptic bismuth(V) complexes: synthesis, structural analysis and binding pattern validation. Appl Organomet Chem 483:129–135

    Google Scholar 

  22. 22.

    Sharutin VV, Sharutina OK (2014) Synthesis and structure of triphenylbismuth bis(pentachlorobenzoate). Russ J Inorg Chem 59:558–560

    CAS  Article  Google Scholar 

  23. 23.

    Sharutin VV, Sharutina OK, Senchurin VS (2016) Triphenylbismuth bis(3,4-dimethylbenzenesulfonate): synthesis and structure. Russ J Inorg Chem 61:317–320

    CAS  Article  Google Scholar 

  24. 24.

    Sharutin VV, Senchurin VS, Sharutina OK (2011) Synthesis and structure of triphenylbismuth bis(1-adamantanecarboxylate). Russ J Inorg Chem 56:1565

    CAS  Article  Google Scholar 

  25. 25.

    Sharutin VV, Senchurin VS, Sharutina OK, Bregadze VI, Zhigareva GG (2010) Synthesis and structure of triphenylbismuth bis(phenylcarboranylcarboxylate). Russ J Gen Chem 80:1941–1944

    CAS  Article  Google Scholar 

  26. 26.

    Sharutin VV, Egorova IV, Kazakov MA, Sharutina OK (2009) Synthesis and structure of triphenylbismuth bis(2-phenylaminobenzoate). Russ J Inorg Chem 54:1095–1098

    Article  Google Scholar 

  27. 27.

    Egorova IV, Sharutin VV, Ivanenko TK, Nikolaeva NA, Molokov AA, Fukin GK (2006) Structures of triphenylbismuth dicarboxylates. Russ J Coord Chem 32:644–651

    CAS  Article  Google Scholar 

  28. 28.

    Gushchin AV, Malysheva YB, Kosov DY, Sharutin VV (2006) Palladium-catalyzed reaction of some triphenylbismuth(V) sulfonates and phenolates with methyl acrylate. Russ J Gen Chem 76:1249–1252

    CAS  Article  Google Scholar 

Download references


This work was supported by the Natural Science Foundation of Inner Mongolia Autonomous (No. 2020BS08013) and the Project of Inner Mongolia University for the Nationalities (NMDYB1723, NMDYB17168).

Author information



Corresponding authors

Correspondence to Ming Bian or Dong Zhen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Liu, Y., Bian, M. et al. Study of the Anticancer Activity of a New Nanosize Bismuth(V)-Based Coordination Complex Against Human Bone Tumor Cells. J Chem Crystallogr (2021).

Download citation


  • Bi(V) compound
  • Singe crystal X-ray diffraction
  • Nanosizing
  • Anticancer activity