Skip to main content
Log in

Synthesis and Crystal Structure of Chalcone Derivatives and Their Effect on α-Glucosidase

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Five chalcone derivatives (E)-1-(2-(2-bromoethoxy)phenyl)-3-phenylprop-2-en-1-one(1), (E)-1-(2-(3-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one(2),(E)-1-(2-(4-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one(3),(E)-1-(2-(5-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one(4),(E)-1-(2-(6-bromopropoxy)phenyl)-3-phenylprop-2-en-1-one(5) were synthesized and characterized by 1H NMR, HRMS. The crystalline structures of compounds 4 and 5 were further characterized by X-ray crystal diffraction. Among the five compounds, 1 and 2 showed inhibitory activity on α-glucosidase, but 4 and 5 increased the activity of α-glucosidase.

Graphic Abstract

Five chalcone derivatives were synthesized and characterized by 1H MNR and HRMS. The crystalline structures of two compounds were further characterized by X-ray crystal diffraction. Two of the compounds have the ability to inhibit α-glucosidase, and two different compounds have the ability to promote α-glucosidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Maragatham G, Selvarani S, Rajakumar P, Lakshmi S (2018) Structure determination and quantum chemical analysis of chalcone derivatives. J Mol Struct. https://doi.org/10.1016/j.molstruc.2018.11.048

    Article  Google Scholar 

  2. Teo KY, Tiong MH, Wee HY, Jasin N, Liu Z-Q, Shiu MY, Tang JY, Tsai J-K, Rahamathullah R, Khairul WM, Tay MG (2017) The influence of the push-pull effect and a π-conjugated system in conversion efficiency of bis-chalcone compounds in a dye sensitized solar cell. J Mol Struct 1143:42–48. https://doi.org/10.1016/j.molstruc.2017.04.059

    Article  CAS  Google Scholar 

  3. Low JN, Cobo J, Nogueras M, Sánchez A, Albornoz A, Abonia R (2002) A comparison of the supramolecular structures of 1-(6-amino-1,3-benzodioxol-5-yl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one and 1-(6-amino-1,3-benzodioxol-5-yl)-3-[4-(N, N-dimethylamino)phenyl]prop-2-en-1-one. Acta Crystallogr C 58(Pt 1):42–45. https://doi.org/10.1107/s0108270101018297

    Article  Google Scholar 

  4. Bak EJ, Hong GP, Lee CH, Lee TI, Woo GH (2011) Effects of novel chalcone derivatives on α-glucosidase, dipeptidyl peptidase-4, and adipocyte differentiation in vitro. BMB Rep 44(6):410–414. https://doi.org/10.5483/BMBRep.2011.44.6.410

    Article  CAS  PubMed  Google Scholar 

  5. Singh P, Anand A, Kumar V (2014) Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 85(45):758–777. https://doi.org/10.1002/chin.201445285

    Article  CAS  PubMed  Google Scholar 

  6. Mayur YCGJP, RajendraPrasad VVS, Lemos C, Sathish NK (2009) Design of new drug molecules to be used in reversing multidrug resistance in cancer cells. Curr Cancer Drug Targets 9(3):298–306. https://doi.org/10.2174/156800909788166619

    Article  CAS  PubMed  Google Scholar 

  7. Chen M, Theander TG, Christensen SB, Hviid L, Zhai L, Kharazmi A (1994) Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from P yoelii infection. Antimicrob Agents Chemother 38(7):1470–1475. https://doi.org/10.1128/aac.38.7.1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yadav N, Dixit SK, Bhattacharya A, Mishra LC, Sharma M, Awasthi SK, Bhasin VK (2012) Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem Biol Drug Des 80(2):340–347. https://doi.org/10.1111/j.1747-0285.2012.01383.x

    Article  CAS  PubMed  Google Scholar 

  9. Choi D, Park JC, Lee HN, Moon JH, Ahn HW, Park K, Hong J (2018) In vitro osteogenic differentiation and antibacterial potentials of chalcone derivatives. Mol Pharm 15(8):3197–3204. https://doi.org/10.1021/acs.molpharmaceut.8b00288

    Article  CAS  PubMed  Google Scholar 

  10. Shakhatreh MA, Al-Smadi ML, Khabour OF, Shuaibu FA, Hussein EI, Alzoubi KH (2016) Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Des Devel Ther 10:3653–3660. https://doi.org/10.2147/dddt.S116312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herencia F, Ferrándiz ML, Ubeda A, Guillén I, Dominguez JN, Charris JE, Lobo GM, Alcaraz MJ (1999) Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages. FEBS Lett 453(1–2):129–134. https://doi.org/10.1016/s0014-5793(99)00707-3

    Article  CAS  PubMed  Google Scholar 

  12. Jin YL, Jin XY, Jin F, Sohn DH, Kim HS (2008) Structure activity relationship studies of anti-inflammatory TMMC derivatives: 4-dimethylamino group on the B ring responsible for lowering the potency. Arch Pharm Res 31(9):1145–1152. https://doi.org/10.1007/s12272-001-1281-7

    Article  CAS  PubMed  Google Scholar 

  13. Sharma H, Patil S, Sanchez TW, Neamati N, Schinazi RF, Buolamwini JK (2011) Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors. Bioorg Med Chem 19(6):2030–2045. https://doi.org/10.1016/j.bmc.2011.01.047

    Article  CAS  PubMed  Google Scholar 

  14. Uchiumi F, Hatano T, Ito H, Yoshida T, Tanuma S (2003) Transcriptional suppression of the HIV promoter by natural compounds. Antivir Res 58(1):89–98. https://doi.org/10.1016/s0166-3542(02)00186-9

    Article  CAS  PubMed  Google Scholar 

  15. Liu Z, Tang L, Zou P, Zhang Y, Wang Z, Fang Q, Jiang L, Chen G, Xu Z, Zhang H, Liang G (2014) Synthesis and biological evaluation of allylated and prenylated mono-carbonyl analogs of curcumin as anti-inflammatory agents. Eur J Med Chem 74:671–682. https://doi.org/10.1016/j.ejmech.2013.10.061

    Article  CAS  PubMed  Google Scholar 

  16. Lokesh BVS, Prasad YR, Shaik AB (2019) Synthesis, biological evaluation and molecular docking studies of new pyrazolines as an antitubercular and cytotoxic agents. Infect Disord Drug Targets 19(3):310–321. https://doi.org/10.2174/1871526519666181217120626

    Article  CAS  PubMed  Google Scholar 

  17. Ming LS, Jamalis J, Al-Maqtari HM, Rosli MM, Sankaranarayanan M, Chander S, Fun HK (2017) Synthesis, characterization, antifungal activities and crystal structure of thiophene-based heterocyclic chalcones. Chem Data Collect. https://doi.org/10.1016/j.cdc.2017.04.004

    Article  Google Scholar 

  18. Barakat A, Al-Majid AM, Soliman SM, Islam MS, Ghawas HM, Yousuf S, Choudhary MI, Wadood A (2017) Monoalkylated barbiturate derivatives: X-ray crystal structure, theoretical studies, and biological activities. J Mol Struct 1141:624–633. https://doi.org/10.1016/j.molstruc.2017.04.017

    Article  CAS  Google Scholar 

  19. de Mello MVP, Abrahim-Vieira BA, Domingos TFS, de Jesus JB, de Sousa ACC, Rodrigues CR, Souza AMT (2018) A comprehensive review of chalcone derivatives as antileishmanial agents. Eur J Med Chem 150:920–929. https://doi.org/10.1016/j.ejmech.2018.03.047

    Article  CAS  PubMed  Google Scholar 

  20. Sun H, Li Y, Zhang X, Lei Y, Ding W, Zhao X, Wang H, Song X, Yao Q, Zhang Y, Ma Y, Wang R, Zhu T, Yu P (2015) Synthesis, α-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg Med Chem Lett 25(20):4567–4571. https://doi.org/10.1016/j.bmcl.2015.08.059

    Article  CAS  PubMed  Google Scholar 

  21. Maragatham G, Selvarani S, Rajakumar P, Lakshmi S (2017) Crystal structures of three 1-[4-(4-bromo-but-oxy)-phen-yl] chalcone derivatives: (E)-1-[4-(4-bromo-but-oxy)-phen-yl]-3-phenyl-prop-2-en-1-one, (E)-1-[4-(4-bromo-but-oxy)-phen-yl]-3-(4-meth-oxy-phen-yl)prop-2-en-1-one and (E)-1-[4-(4-bromo-but-oxy)-phen-yl]-3-(3,4-di-meth-oxy-phen-yl)prop-2-en-1-one. Acta Crystallogr E Crystallogr Commun 73(Pt 8):1232–1236. https://doi.org/10.1107/s2056989017010052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Karki R, Jun KY, Kadayat TM, Shin S, Thapa Magar TB, Bist G, Shrestha A, Na Y, Kwon Y, Lee ES (2016) A new series of 2-phenol-4-aryl-6-chlorophenyl pyridine derivatives as dual topoisomerase I/II inhibitors: synthesis, biological evaluation and 3D-QSAR study. Eur J Med Chem 113:228–245. https://doi.org/10.1016/j.ejmech.2016.02.050

    Article  CAS  PubMed  Google Scholar 

  23. Bruker (2005) APEX2, SAINT and SADABS. Bruker AXS Inc, Madison

    Google Scholar 

  24. Song Z, Kwok RT, Zhao E, He Z, Hong Y, Lam JW, Liu B, Tang BZ (2014) A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl Mater Interfaces 6(19):17245–17254. https://doi.org/10.1021/am505150d

    Article  CAS  PubMed  Google Scholar 

  25. Chun-Mei G, Xiu-Ying S, Mi-Na W, Jia G, Xu-Liang N (2020) Crystal structure of 3-cinnamoyl-4-hydroxybenzoic acid, C16H12O4. Zeitschrift für Kristallographie. https://doi.org/10.1515/ncrs-2020-0178

    Article  Google Scholar 

  26. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64(Pt 1):112–122. https://doi.org/10.1107/s0108767307043930

    Article  CAS  PubMed  Google Scholar 

  27. Ghani U (2015) Re-exploring promising α-glucosidase inhibitors for potential development into oral anti-diabetic drugs: finding needle in the haystack. Eur J Med Chem 103:133–162. https://doi.org/10.1016/j.ejmech.2015.08.043

    Article  CAS  PubMed  Google Scholar 

  28. Cendret V, Legigan T, Mingot A, Thibaudeau S, Adachi I, Forcella M, Parenti P, Bertrand J, Becq F, Norez C, Désiré J, Kato A, Blériot Y (2015) Synthetic deoxynojirimycin derivatives bearing a thiolated, fluorinated or unsaturated N-alkyl chain: identification of potent α-glucosidase and trehalase inhibitors as well as F508del-CFTR correctors. Org Biomol Chem 13(43):10734–10744. https://doi.org/10.1039/c5ob01526j

    Article  CAS  PubMed  Google Scholar 

  29. Natori Y, Imahori T, Murakami K, Yoshimura Y, Nakagawa S, Kato A, Adachi I, Takahata H (2011) The synthesis and biological evaluation of 1-C-alkyl-L-arabinoiminofuranoses, a novel class of α-glucosidase inhibitors. Bioorg Med Chem Lett 21(2):738–741. https://doi.org/10.1016/j.bmcl.2010.11.112

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by The National Natural Science Foundation of China (No. 31460436, 31260368), Scientific Research Project of Jiangxi Food and Drug Administration (No.2017sp28). The Research Foundation of Educational Department of Jiangxi Province [No. GJJ160382]. X-ray data were collected at Instrumental Analysis Center Nanchang Hang Kong University, Nanchang, 330063, People's Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da-Yong Peng or Xu-Liang Nie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, P., Yin, ZP., Wang, M. et al. Synthesis and Crystal Structure of Chalcone Derivatives and Their Effect on α-Glucosidase. J Chem Crystallogr 50, 249–254 (2020). https://doi.org/10.1007/s10870-020-00842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-020-00842-5

Keywords

Navigation