Two Cadmium(II) Complexes Constructed by 2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)benzoate: Crystal Structures, Luminescent Properties and Hirshfeld Surface Analyses

  • Li-Yang Zhang
  • Li-Ping LuEmail author
  • Miao-Li ZhuEmail author
Original Paper


Two cadmium(II) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate with chemical formulas of [Cd2(ppb)4(H2O)2]·8H2O (1) and [Cd(Hppb)I2]n (2) (Hppb = 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoic acid), have been synthesized. Both complexes are well characterized by IR, TGA and X-ray single-crystal as well as powder diffraction. Structural analyses reveal that 1 is a binuclear complex and 2 has one-dimensional polymers, respectively, in which they are expanded to three-dimensional supramolecular structures by hydrogen bonds. The Cd(II) coordinated environments in 1 are slightly distorted octahedral geometries, but central atoms in 2 display distorted square pyramidal geometries. There are obvious differences in ligation modes of the ppb or Hppb ligands for both complexes. In 1, four ppb ligands are divided into two groups, displaying µ1-kN, N′ and µ2-kN, N′: kO coordination modes. Two ppb ligands act as two µ1,6-bridges linking the binuclear Cd(II) cations with a distance of 6.282(2) Å. In 2 the neutral Hppb ligands exhibit a µ2-kN, N′: kO coordination mode, and connecting Cd(II) ions by µ1,6-bridges and forming an infinite 1D chain along b axis. Hirshfeld surfaces and fingerprint plots analyses indicate that weak interactions of C–H···π, π···π, O–H···O or O–H···I play important roles in crystal packings of 1 and 2. Luminescent measurements in solid-state show their different intensities in the luminescences of 1 and 2.

Graphical Abstract

A binuclear complex [Cd2(ppb)4(H2O)2]·8H2O (1) and a one-dimensional complex [Cd(Hppb)I2]n (2) were synthesized and characterized by X-ray crystal diffraction. Investigation of solid-state luminescence properties indicates the blue shifts of the emission λmax of complexes.


2-(3-(Pyridin-2-yl)-1H-pyrazol-1-yl)benzoate Cadmium(II) complexes Hirshfeld surfaces Solid-state luminescent properties 



The authors thank Dr Zeng-Qiang Gao at line 3W1A of BSRF for his help with the single-crystal X-ray diffraction data collection and reduction, and acknowledge the financial support by the Natural Science Foundation of China (Grant Nos 21571118 and 21671124). A portion of this work was performed on the Scientific Instrument Center of Shanxi University of China.


  1. 1.
    Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629–1658CrossRefGoogle Scholar
  2. 2.
    Lu W, Huo J, Feng Y, Zhao S, You H (2016) Dalton Trans 45:9676–9683CrossRefGoogle Scholar
  3. 3.
    Ma LF, Wang LY, Lu DH, Batten SR, Wang JG (2009) Cryst Growth Des 9:1741–1749CrossRefGoogle Scholar
  4. 4.
    Wei X, Di D, Chu W, Zhu Q, Huang R (2008) Inorg Chim Acta 361:1819–1826CrossRefGoogle Scholar
  5. 5.
    Liang G, Liu Y, Zhang X, Yi Z (2014) CrystEngComm 16:9896–9906CrossRefGoogle Scholar
  6. 6.
    Campos-Fernandez CS, Schottel BL, Chifotides HT, Bera JK, Bacsa J, Koomen JM, Russell DH, Dunbar KR (2005) J Am Chem Soc 127:12909–12923CrossRefGoogle Scholar
  7. 7.
    Yang LB, Wang HC, Fang XD, Chen SJ, Xu QQ, Zhu AX, Yang Z (2016) CrystEngComm 18:130–142CrossRefGoogle Scholar
  8. 8.
    Li RF, Liu XF, Wang YF, Feng X, Ma LF (2016) Chin J Struct Chem 35:1936–1943Google Scholar
  9. 9.
    Rachuri Y, Bisht KK, Parmar B, Suresh E (2015) J Solid State Chem 223:23–31CrossRefGoogle Scholar
  10. 10.
    Song XZ, Song SY, Zhao SN, Hao ZM, Zhu M, Meng X, Zhang HJ (2013) Dalton Trans 42:8183–8187CrossRefGoogle Scholar
  11. 11.
    Wang K, Huang XK, Zhu L, Chen ZL, Liang FP (2016) Chin J Struct Chem 35:1912–1919Google Scholar
  12. 12.
    McKinnon JJ, Mitchell AS, Spackman MA (1998) Chem-Eur J 4:2136CrossRefGoogle Scholar
  13. 13.
    Spackman MA, Byrom PG (1997) Chem Phys Lett 267:215CrossRefGoogle Scholar
  14. 14.
    McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Cryst B 60:627CrossRefGoogle Scholar
  15. 15.
    Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378CrossRefGoogle Scholar
  16. 16.
    Spackman MA, McKinnon JJ, Jayatilaka D (2008) CrystEngComm 10:377Google Scholar
  17. 17.
    Gu X, Xue D (2006) Cryst Growth Des 6:2551–2557CrossRefGoogle Scholar
  18. 18.
    Karmakar A, Goldberg I (2010) CrystEngComm 12:4095CrossRefGoogle Scholar
  19. 19.
    Fang RQ, Zhang XM (2006) Inorg Chem 45:4801–4810CrossRefGoogle Scholar
  20. 20.
    Chen X, He S, Chen F, Feng Y (2014) CrystEngComm 16:8706–8709CrossRefGoogle Scholar
  21. 21.
    Yamamoto E, Kubo K, Kato N, Mori A (2000) Acta CrystallogrSect C 56:E329–E330CrossRefGoogle Scholar
  22. 22.
    Murugavel R, Karambelkar VV, Anantharaman G, Walawalkar MG (2000) Inorg Chem 39:1381–1390CrossRefGoogle Scholar
  23. 23.
    Xie L, Lu LP, Zhu ML (2016) Chin J Struct Chem 35:1606–1614Google Scholar
  24. 24.
    Avecilla F, Esteban D, Platas-Iglesias C, De Blas A, Rodriguez-Blas T (2003) Acta CrystallogrSect C 59:M93–M94CrossRefGoogle Scholar
  25. 25.
    Addison AW, Rao TN (1984) J Chem Soc, Dalton Trans 1349:1356Google Scholar
  26. 26.
    Feng SS, Qin SD, Feng GQ, Zhu ML (2012) J Chem Crystallogr 42:621–627CrossRefGoogle Scholar
  27. 27.
    Zheng SL, Yang JH, Yu XL, Chen XM, Wong WT (2004) Inorg Chem 43:830–838CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education MinistryShanxi UniversityTaiyuanPeople’s Republic of China
  2. 2.School of Chemistry and Environmental EngineeringShanxi Datong UniversityDatongPeople’s Republic of China
  3. 3.Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular ScienceShanxi UniversityTaiyuanPeople’s Republic of China

Personalised recommendations