Skip to main content
Log in

Synthesis, Crystal Structure and Hirshfeld Surface (HS) Analysis of Two New Phosphoric Triamides: A Comparison of HSs for Structures with Different Molecular Assemblies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two new phosphoric triamides, N-(2-chloro-5-fluorobenzoyl)-N′,N"-bis(morpholin-4-yl)-phosphoric triamide, (2-Cl,5-F-C6H3C(O)NH)P(O)(NC4H8O)2, 1, and N,N′-dibenzyl-N"-(2-chloro-5-fluorobenzoyl)-N,N′-diethylphosphoric triamide, (2-Cl,5-F-C6H3C(O)NH)P(O)(N(C2H5)(CH2C6H5))2, 2, were synthesized and characterized by 1H-, 13C-, 31P-, 19F-NMR and IR spectroscopies and single-crystal X-ray diffraction analysis. Different orientations of P(O) versus NH, anti in 1 and syn in 2, lead to different hydrogen bond patterns, mediated by N–H⋯O, as a linear arrangement forming a C(4) motif and a dimeric aggregate with an \(R_{2}^{2}\left( 8 \right)\) ring motif, respectively. The crystal packing of both compounds present a three-dimensional supramolecular assembly, made by the cooperation from weak intermolecular interactions, C–H⋯O and C–H⋯π, for 1 and 2, and π⋯π for 2. Hirshfeld surface analysis demonstrates that the H⋯H contacts are decisive for both structures with contribution portions of 39.1% for 1 and 49.6% for 2. The O⋯H/H⋯O (1: 24.4% and 2: 9.6%) contacts are the characteristic intermolecular interactions, showing a pair of sharp spikes; while C⋯H/H⋯C contacts (1: 11.3% and 2: 21.7%), associated to the π⋯H/H⋯π interactions, can be illustrated as wings in the corresponding fingerprint plots. The C⋯C contacts are revealed for 2 (1.6%), associated to π⋯π interaction observed in the X-ray analysis.

Graphical Abstract

Two phosphoric triamides with the same [C(O)NH]P(O)[N(C)(C)]2 skeleton but with different molecular assemblies were investigated by the analysis of Hirshfeld surfaces and fingerprint plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Steblevskaya NI, Medkov MA, Emelina TB (2015) J Inorg Chem 60:252–258

    CAS  Google Scholar 

  2. Kapoor RN, Guillory P, Schulte L, Cervantes-Lee F, Haiduc L, Parkanyi L, Pannell KH (2005) Appl Organomet Chem 19:510–517

    Article  CAS  Google Scholar 

  3. Pourayoubi M, Shoghpour Bayraq S, Tarahhomi A, Nečas M, Fejfarová K, Dušek M (2014) J Organomet Chem 751:508–518

    Article  CAS  Google Scholar 

  4. Sanavi Khoshnood R, Pourayoubi M, Kasraee F, Toghraee M, Dušek M, Bereciartua PJ (2014) Russ J Phys Chem 88:2146–2156

    Article  Google Scholar 

  5. Metta-Magaña AJ, Pourayoubi M, Pannell KH, Rostami Chaijan M, Eshtiagh-Hosseini H (2012) J Mol Struct 1014:38–46

    Article  Google Scholar 

  6. Gholivand K, Mahzouni HR, Pourayoubi M, Amiri S (2010) Inorg Chim Acta 363:2318–2324

    Article  CAS  Google Scholar 

  7. Gholivand K, Farshadian S, Hosseini Z (2012) J Organomet Chem 696:4298–4308

    Article  CAS  Google Scholar 

  8. Pourayoubi M, Toghraee M, Zhu J, Dušek M, Bereciartua PJ, Eigner V (2014) CrystEngComm 16:10870–10887

    Article  CAS  Google Scholar 

  9. Schmidt A, Casini A, Kuhn FE (2014) Coord Chem Rev 275:19–36

    Article  CAS  Google Scholar 

  10. Martin AD, Britton J, Easun TL, Blake AJ, Lewis W, Schröder M (2015) Cryst Growth Des 15:1697–1706

    Article  CAS  Google Scholar 

  11. Guo F, Zhang M-Q, Famulari A, Martí-Rujas J (2013) CrystEngComm 15:6237–6243

    Article  CAS  Google Scholar 

  12. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  13. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  14. Guan H-Y, Wang Z, Famulari A, Wang X, Guo F, Martí-Rujas J (2014) Inorg Chem 53:7438–7445

    Article  CAS  Google Scholar 

  15. Guo F, Martí-Rujas J (2016) Dalton Trans 45:13648–13662

    Article  CAS  Google Scholar 

  16. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19–32

    Article  CAS  Google Scholar 

  17. Vahdani Alviri B, Pourayoubi M, Farhadipour A, Nečas M, Bertolasi V (2018) Acta Crystallogr C74:1610–1621

    Google Scholar 

  18. Torabi Farkhani E, Pourayoubi M, Izadyar M, Andreev PV, Shchegravina ES (2018) Acta Crystallogr C74:847–855

    Google Scholar 

  19. Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2013) Crystal explorer 3.1. University of Western Australia, Crawley

    Google Scholar 

  20. Agilent (2011) CrysAlis PRO: Agilent Technologies, Yarnton, Oxfordshire, England

  21. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Crystallogr 36:1487

    Article  CAS  Google Scholar 

  22. Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786–790

    Article  CAS  Google Scholar 

  23. Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Crystallogr 43:1100–1107

    Article  CAS  Google Scholar 

  24. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  25. Spek AL (2009) Acta Crystallogr D65:148–155

    Google Scholar 

  26. Keikha M, Pourayoubi M, Tarahhomi A, van der Lee A (2016) Acta Crystallogr C72:251–259

    Google Scholar 

  27. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  28. McKinnon JJ, Mitchell AS, Spackman MA (1998) Chem Eur J 4:2136–2141

    Article  CAS  Google Scholar 

  29. Spackman MA, McKinnon JJ (2002) CrystEngComm 4:378–392

    Article  CAS  Google Scholar 

  30. McKinnon JJ, Fabbiani FPA, Spackman MA (2007) Cryst Growth Des 7:755–769

    Article  CAS  Google Scholar 

  31. McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Crystallogr B60:627–668

    Article  CAS  Google Scholar 

  32. Fabbiani FPA, Leech CK, Shankland K, Johnston A, Fernandes P, Florence AJ, Shankland N (2007) Acta Crystallogr C63:o659–o663

    Google Scholar 

  33. Durka K, Hoser AA, Kamiñski R, Luliñski S, Serwatowski J, Koźmiński W, Woźniak K (2011) Cryst Growth Des 11:1835–1845

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Support of this investigation by the Ferdowsi University of Mashhad (Project No. 33424/3) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrdad Pourayoubi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keikha, M., Pourayoubi, M. & van der Lee, A. Synthesis, Crystal Structure and Hirshfeld Surface (HS) Analysis of Two New Phosphoric Triamides: A Comparison of HSs for Structures with Different Molecular Assemblies. J Chem Crystallogr 50, 88–98 (2020). https://doi.org/10.1007/s10870-019-00776-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-019-00776-7

Keywords

Navigation