X-ray Structure and DFT Studies of a New Square Planar Silver(I) Complex of Ketene S,S-Dithioacetal Ligand


The [AgL2]ClO4 complex, where L is ketene S,S-dithioacetal type ligand, is synthesized and characterized using elemental analysis, different spectroscopic techniques (FTIR and NMR) and single crystal X-ray diffraction (SC-XRD). The Ag-atom is coordinated by two oxygen and two sulfur atoms of both bidentate ligands resulting in a distorted square planar environment augmented by two weak contacts with two oxygen atoms from the perchlorate anion. The H⋯H (42.0%), O⋯H (29.7%), C⋯H (10.8%) and S⋯H (11.7%) intermolecular contacts were quantified using Hirshfeld analysis. The PBEPBE and WB97XD methods are the best to predict the Ag–S and Ag–O(L) distances. Natural bond orbital (NBO) analysis showed that each ligand (L) transferred 0.1507 e (exp. 0.1715 e) to Ag-atom while the perchlorate anion lost 0.1748 e (exp. 0.1481 e) to silver {0.5227 e (exp. 0.5088 e)}.

Graphical Abstract

The structure aspects of the newly synthesized square planar [AgL2]ClO4 complex, where L is ketene S,S-dithioacetal ligand, were analyzed using different spectroscopic techniques (FT-IR, NMR) and X-ray single crystal structure combined with DFT calculations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. 1.

    Atiyeh BS, Costagliola M, Hayek SN, Dibo SA (2007) Effect of silver on burn wound infection control and healing: review of the literature. Burns 33:139–148

    PubMed  Google Scholar 

  2. 2.

    Rowan R, Tallon T, Sheahan AM, Curran R, McCann M, Kavanagh K, Devereux M, McKee V (2006) Silver bullets in antimicrobial chemotherapy: synthesis, characterisation and biological screening of some new Ag(I)-containing imidazole complexes. Polyhedron 25:1771–1778

    CAS  Google Scholar 

  3. 3.

    Kascatan-Nebioglu A, Panzner MJ, Tessier CA, Cannon CL, Youngs WJ (2007) N-Heterocyclic carbene–silver complexes: a new class of antibiotics. Coord Chem Rev 251:884–895

    CAS  Google Scholar 

  4. 4.

    Medici S, Peana M, Nurchi VM, Lachowicz JI, Crisponi G, Zoroddu MA (2015) Noble metals in medicine: latest advances. Coord Chem Rev 284:329–350

    CAS  Google Scholar 

  5. 5.

    Glisic BD, Senerovic L, Comba P, Wadepohl H, Veselinovic A, Milivojevic DR, Djuran MI, Nikodinovic-Runic J (2016) Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosastrains. J Inorg Biochem 155:115–128

    CAS  PubMed  Google Scholar 

  6. 6.

    Ahmad S, Isab AA, Ali S, Al-Arfaj AR (2006) Perspectives in bioinorganic chemistry of some metal based therapeutic agents. Polyhedron 25:1633–1645

    CAS  Google Scholar 

  7. 7.

    Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26:117–130

    CAS  PubMed  Google Scholar 

  8. 8.

    Fox CL, Modak SM (1974) Mechanism of silver sulfadiazine action on burn wound infections. Antimicrob Agents Chemother 5:582–588

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Guggenbichler JP, Boswald M, Lugauer S, Krall T (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27:S16–S23

    CAS  PubMed  Google Scholar 

  10. 10.

    Slawson RM, Vandyke MI, Lee H, Trevors JT (1992) Germanium and silver resistance, accumulation, and toxicity in microorganisms. Plasmid 27:72–79

    CAS  PubMed  Google Scholar 

  11. 11.

    Ronconi L, Sadler PJ (2007) Using coordination chemistry to design new medicines. Coord Chem Rev 251:1633–1648

    CAS  Google Scholar 

  12. 12.

    Curran R, Lenehan J, McCann M, Kavanagh K, Devereux M, Egan DA, Clifford G, Keane K, Creaven BS, Mckee V (2007) [Ag2(aca)2]n and [Ag4(aca)4(NH3)2] (acaH = 9-anthracenecarboxylic acid): synthesis, X-ray crystal structures, antimicrobial and anti-cancer activities. Inorg Chem Commun 10:1149–1153

    CAS  Google Scholar 

  13. 13.

    Nomiya K, Yokoyama H (2002) Syntheses, crystal structures and antimicrobial activities of polymeric silver(I) complexes with three amino-acids [aspartic acid (H2asp), glycine (Hgly) and asparagine (Hasn)]. Dalton Trans. https://doi.org/10.1039/B200684G

    Article  Google Scholar 

  14. 14.

    Coyle B, McCann M, Kavanagh K, Devereux M, McKee V, Kayal N, Egan D, Deegan C, Finn GJ (2004) Synthesis, X-ray crystal structure, anti-fungal and anti-cancer activity of [Ag2(NH3)2(salH)2] (salH2 = salicylic acid). J Inorg Biochem 98:1361–1366

    CAS  PubMed  Google Scholar 

  15. 15.

    Nomiya K, Takahashi S, Noguchi R, Nemoto S, Takayama T, Oda M (2000) Synthesis and characterization of water-soluble silver(I) complexes with L-histidine (H2his) and (S)-(–)-2-pyrrolidone-5-carboxylic acid (H2pyrrld) showing a wide spectrum of effective antibacterial and antifungal activities. Crystal structures of chiral helical polymers [Ag(Hhis)]n and {[Ag(Hpyrrld)]2}n in the solid state. Inorg Chem 39:3301–3311

    CAS  PubMed  Google Scholar 

  16. 16.

    Nomiya K, Kondoh Y, Onoue K, Kasuga NC, Nagano H, Oda M, Sudoh T, Sakuma S (1995) Synthesis and characterization of polymeric, anionic thiosalicylato-Ag(I) complexes with antimicrobial activities. J Inorg Biochem 58:255–267

    CAS  Google Scholar 

  17. 17.

    Nomiya K, Tsuda K, Sudoh T, Oda M (1997) Ag(I)-N bond-containing compound showing wide spectra in effective antimicrobial activities: polymeric silver(I) imidazolate. J Inorg Biochem 68:39–44

    CAS  PubMed  Google Scholar 

  18. 18.

    Abuskhuna S, Briody J, McCann M, Devereux M, Kavanagh K, Fontecha JB, McKee V (2004) Synthesis, structure and anti-fungal activity of dimeric Ag(I) complexes containing bis-imidazole ligands. Polyhedron 23:1249–1255

    CAS  Google Scholar 

  19. 19.

    Zhu HL, Chen Q, Peng WL, Qi SJ, Xu AL, Chen XM (2001) Syntheses, crystal structures and cytotoxities of silver (I) complexes of 2, 2′-bipyridines and 1, 10-phenanthroline. Chin J Chem 19:263–267

    CAS  Google Scholar 

  20. 20.

    Li WB, Li WH (2011) Synthesis and crystal structure of a polynuclear silver(I) complex with 4,4′-biphenyldicarboxylate and N-propylethane-1,2-diamine. Synth React Inorg MetOrg Nano-Met Chem 41:626–630

    CAS  Google Scholar 

  21. 21.

    Yesilel OZ, Kastas G, Darcan C, Ilker I, Pasaoglu H, Buyukgungor O (2010) Syntheses, thermal analyses, crystal structures and antimicrobial properties of silver(I)-saccharinate complexes with diverse diamine ligands. Inorg Chim Acta 363:1849–1858

    CAS  Google Scholar 

  22. 22.

    Ahmad S, Yousaf A, Tahir MN, Isab AA, Monim-ul-Mehboob M, Linert W, Saleem M (2015) Structural characterization and antimicrobial activity of a silver(I) complex of arginine. J Struct Chem 56:1653–1657

    CAS  Google Scholar 

  23. 23.

    Pretsch T, Hart H (2005) Structural studies on 1:1 and 2:1 adducts of silver(I) cyanide with alkanediamine ligands. Inorg Chim Acta 358:1179–1185

    CAS  Google Scholar 

  24. 24.

    Nomiya K, Kondoh Y, Nagano H, Oda M (1995) Characterization by electrospray ionization (ESI) mass spectrometry of an oligomeric, anionic thiomalato-silver(I) complex showing biological activity. Chem Commun. https://doi.org/10.1039/C39950001679

    Article  Google Scholar 

  25. 25.

    Zachariadis PC, Hadjikakou SK, Hadjiliadis N, Michaelides A, Skoulika S, Ming Y, Xiaolin Y (2003) Synthesis, study and structural characterization of a new water soluble hexanuclear silver(I) cluster with the 2-mercapto-nicotinic acid with possible antiviral activity. Inorg Chim Acta 343:361–365

    CAS  Google Scholar 

  26. 26.

    James TH (1977) The theory of the photographic process, 4th edn. Macmillan, New York

    Google Scholar 

  27. 27.

    Araki T, Seki K, Nariioka S, Ishii H, Takata Y, Yokoyama T, Ohta T, Okajima T, Watanabe S, Tani T (1993) XANES spectroscopic studies of merocyanine dyes and their adsorbed states on AgCl. Jpn J Appl Phys 32:434–438

    CAS  Google Scholar 

  28. 28.

    Cowdery-Corvan PJ, Whitcomb DR (2002) In: Diamond AS, Weiss DS (eds) Handbook of Imaging Materials. Marcel Dekker, New York

    Google Scholar 

  29. 29.

    Slusarek WK, Yang X, Irving ME, Levy DH, Mooberry JB, Seifert JJ, Reynolds JH, Irving LM (2001) Imaging element containing a blocked photographic developer, EP 1113316

  30. 30.

    Singh B, Sharma USP, Sharma DK (1980) Conductometric and spectrometric studies on the complexes of Ag (I) and Hg (II) With 1-phenyltetrazoline-5-thione. J Indian Chem Soc 57:1066–1070

    CAS  Google Scholar 

  31. 31.

    McMorran DA, Steel PJ (2002) New U-shaped components for metallosupramolecular assemblies: synthesis and coordination chemistry of 2,6-bis(4-(3-pyridyloxy)phenoxy)pyrazine. Supramol Chem 14:79–85

    CAS  Google Scholar 

  32. 32.

    Richardson C, Steel PJ (2003) 3,6-Di(2-pyridyl)-1,4,2,5-dioxadiazine and a silver coordination polymer with an unprecedented metallosupramolecular topology. Eur J Inorg Chem 2003:405–408

    Google Scholar 

  33. 33.

    Sumby CJ, Steel PJ (2005) An investigation of the coordination chemistry of the hexadentate ligand di-2-pyridylketone azine; the formation of a discrete tetranuclear complex with silver nitrate. New J Chem 29:1077–1081

    CAS  Google Scholar 

  34. 34.

    Lewis W, Seel PJ (2005) Chiral heterocyclic ligands. XI. Self-assembly and X-ray crystal structures of chiral silver coordination polymers of (S)-(–)-nicotine. Supramol Chem 17:579–584

    CAS  Google Scholar 

  35. 35.

    Soliman SM, Mabkhot YN, Barakat A, Ghabbour HA (2017) A highly distorted hexacoordinated silver(I) complex: synthesis, crystal structure, and DFT studies. J Coord Chem 70:1339–1356

    CAS  Google Scholar 

  36. 36.

    Siemens analytical X-ray Instruments Inc.: Madison, WI (1995)

  37. 37.

    SADABS: Sheldrick GM (1996) University of Goettingen: Goettingen, Germany

  38. 38.

    Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Cryst A 71:3–8

    Google Scholar 

  39. 39.

    Mabkhot YN, Barakat A, Al-Showiman SS, Soliman SM, Frey W, Ghabbour HA (2016) Crystal structure of 2-(bis(methylthio)methylene)-1-phenylbutane-1,3-dione, C13H14O2S2. Z Kristallogr NCS 231:475–476

    CAS  Google Scholar 

  40. 40.

    Wolff SK, Grimwood DJ, McKinnon JJ, Turner MJ, Jayatilaka D, Spackman MA (2012) Crystal Explorer (Version 3.1), University of Western Australia

  41. 41.

    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF (2009) Gaussian, Inc., Wallingford CT

  42. 42.

    GaussView Version 4.1 (2009) Dennington II R, Keith T, Millam J, Semichem Inc., Shawnee Mission

  43. 43.

    Zhurko GA, Zhurko DA (2005) Chemcraft: Lite Version Build 08 (Freeware)

  44. 44.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283

    CAS  Google Scholar 

  45. 45.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi. J Chem Phys 82:284–298

    Google Scholar 

  46. 46.

    Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J Chem Phys 82:299–310

    CAS  Google Scholar 

  47. 47.

    Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) Self-consistent molecular orbital methods. 23. A polarization basis set for second row elements. J Chem Phys 77:3654–3665

    CAS  Google Scholar 

  48. 48.

    Blaudeau JP, McGrath MP, Curtiss LA, Radom L (1997) Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J Chem Phys 107:5016–5021

    CAS  Google Scholar 

  49. 49.

    Glendening ED, Reed AE, Carpenter JE, Weinhold F (1998) NBO Version 3.1. University of Wisconsin, Madison

    Google Scholar 

  50. 50.

    Ok KM, Halasyamani PS, Casanova D, Llunell M, Alvarez S (2006) Distortions in octahedrally coordinated d0 transition metal oxides: a continuous symmetry measures approach. Chem Mater 18:3176–3183

    CAS  Google Scholar 

  51. 51.

    Santiaqo A, David A, Llunell M, Pinsky M (2002) Continuous symmetry maps and shape classification. The case of six-coordinated metal compounds. New J Chem 26:996–1009

    Google Scholar 

  52. 52.

    Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans 9:955–964

    Google Scholar 

  53. 53.

    Okuniewski A, Rosiak D, Chojnacki J, Becker B (2015) Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 90:47–57

    CAS  Google Scholar 

  54. 54.

    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539

    CAS  Google Scholar 

Download references


The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for its funding this prolific research group No. (R. G. P. 2/17/40/2019).

Author information



Corresponding authors

Correspondence to Saied. M. Soliman or Yahia Nasser Mabkhot.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soliman, S.M., Mabkhot, Y.N. & Albering, J.H. X-ray Structure and DFT Studies of a New Square Planar Silver(I) Complex of Ketene S,S-Dithioacetal Ligand. J Chem Crystallogr 50, 52–61 (2020). https://doi.org/10.1007/s10870-019-00772-x

Download citation


  • Silver(I)
  • Ketene
  • S,S-dithioacetal
  • Square planar
  • Hirshfeld
  • NBO