Skip to main content
Log in

Crystal and Molecular Structures of Five 3D Organic Salts from 2,6-Dimethylaniline and Organic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Five crystalline organic acid-base salts [(HL)·(dnsa), L = 2,6-dimethylaniline, dnsa = 3,5-dinitrosalicylate] (1), [(HL+)·(4-Hnpta), 4-Hnpta = 4-nitrophthalate] (2), [(HL)2·(nds)·(H2O)2, nds = 1,5-naphthalenedisulfonate] (3), [(HL)·(dnb)·(Hdnb), dnb = 3,5-dinitrobenzoate, Hdnb = 3,5-dinitrobenzoic acid] (4) and [(HL)·(dca), dca = dichloroacetate] (5) from 2,6-dimethylaniline and organic acids were prepared and characterized by XRD analysis, IR, mp and elemental analysis. Compound 1 adopts the triclinic, space group Pī, with a = 7.6261(6) Å, b = 8.3429(8) Å, c = 13.1147(12) Å, α = 91.3610(10)º, β = 102.755(2)º, γ = 102.597(2)º, V = 791.96(12) Å3, Z = 2. Compound 2 belongs to the monoclinic, space group P2(1)/c, with a = 14.2552(15) Å, b = 8.1436(8) Å, c = 14.5708(13) Å, α = 90°, β = 113.795(2)º, γ = 90°, V = 1547.7(3) Å3, Z = 4. Compound 3 crystallizes in the monoclinic, space group P2(1)/c, with a = 8.4784(7) Å, b = 17.4798(15) Å, c = 9.1119(8) Å, α = 90°, β = 99.742(2)º, γ = 90°, V = 1330.9(2) Å3, Z = 2. Compound 4 has orthorhombic, space group Pna2(1), with a = 24.5029(19) Å, b = 7.5322(9) Å, c = 26.665(2) Å, α = 90°, β = 90°, γ = 90°, V = 4921.3(8) Å3, Z = 8. Compound 5 crystallizes in the monoclinic, space group C2/c, with a = 19.8970(17) Å, b = 11.1850(11) Å, c = 13.1590(12) Å, α = 90°, β = 123.408(3)º, γ = 90°, V = 2444.6(4) Å3, Z = 8. For 1 it was the relatively weak phenol that has ionized, different from 2 to 5. All supramolecular architectures of 15 involve N–H⋯O H-bonds as well as CH3⋯O interactions. The other noncovalent interactions (CH⋯O, CH⋯Cl, O⋯C, O⋯N, O⋯O, Cl⋯Cl, C⋯π, O⋯π, CH3⋯π and π⋯π) in the crystal packing were also ascertained. These weak interactions combined, all compounds displayed 3D framework structures.

Graphical Abstract

In the five prepared supramolecular assemblies there are plenty of weak bonding interactions such as directional H-bonds of N–H⋯O, O–H⋯O, O–H⋯S, O–H⋯N and noncovalent bonds of CH⋯O, CH3⋯O, CH⋯Cl, O⋯C, O⋯N, O⋯O, Cl–Cl, C⋯π, O⋯π, CH3⋯π, and aryl⋯aryl interactions. All compounds displayed the 3D framework structures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Metrangolo P, Neukirch H, Pilati T, Resnatti G (2005) ACC Chem Res 38:386

    CAS  PubMed  Google Scholar 

  2. Britz DA, Khlobystov AN (2006) Chem Soc Rev 35:637

    CAS  PubMed  Google Scholar 

  3. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    CAS  PubMed  Google Scholar 

  4. Steiner T (2002) Angew Chem Int Ed 41:48

    CAS  Google Scholar 

  5. Kinbara K, Hashimoto Y, Sukegawa M, Nohira H, Saigo K (1996) J Am Chem Soc 118:3441

    CAS  Google Scholar 

  6. Soldatov DV, Moudrakovski IL, Grachev EV, Ripmeester JA (2006) J Am Chem Soc 128:6737

    CAS  PubMed  Google Scholar 

  7. Seaton CC, Parkin A, Wilson CC, Bladen N (2009) Cryst Growth Des 9:47

    CAS  Google Scholar 

  8. Bazuin CG, Brandys FA (1992) Chem Mater 4:970

    CAS  Google Scholar 

  9. Desiraju GR, Steiner T (2001) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, Oxford

    Google Scholar 

  10. Atwood JL, Steed JW (2004) Encyclopedia of supramolecular chemistry. Marcel Dekker, New York

    Google Scholar 

  11. Steed JW, Atwood JL (2009) Supramolecular Chemistry, 2nd edn. Wiley, Chichester

    Google Scholar 

  12. MacDonald JC, Whitesides GM (1994) Chem Rev 94:2383

    CAS  Google Scholar 

  13. Mu Z, Shu L, Fuchs H, Mayor M, Chi L (2008) J Am Chem Soc 130:10840

    CAS  PubMed  Google Scholar 

  14. Desiraju GR (2011) Angew Chem Int Ed Engl 50:52

    CAS  PubMed  Google Scholar 

  15. Wang ZQ, Wang LY, Zhang X, Shen JC, Denzinger S, Ringsdorf H (1997) Macromol Chem Phys 198:573

    CAS  Google Scholar 

  16. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dhannenberg JJ, Hobza P, Kjaergaard HG, Legon AC, Mennucci B, Nesbitt DJ (2011) Pure Appl Chem 83:1619

    CAS  Google Scholar 

  17. Görbitz CH, Nilsen M, Szeto K, Tangen LW (2005) Chem Commun 34:4288

    Google Scholar 

  18. Du M, Zhang ZH, Guo W, Fu XJ (2009) Cryst Growth Des 9:1655

    CAS  Google Scholar 

  19. Kodama K, Kobayashi Y, Saigo K (2007) Cryst Growth Des 7:935

    CAS  Google Scholar 

  20. Braga D, Brammer L, Champness NR (2005) CrystEngComm 7:1

    CAS  Google Scholar 

  21. Biradha K (2003) CrystEngComm 5:374

    CAS  Google Scholar 

  22. Yao J, Chen JM, Xu YB, Lu TB (2014) Cryst Growth Des 14:5019

    CAS  Google Scholar 

  23. Chen JM, Li S, Lu TB (2014) Cryst Growth Des 14:6399

    CAS  Google Scholar 

  24. Wang ZZ, Chen JM, Lu TB (2012) Cryst Growth Des 12:4562

    CAS  Google Scholar 

  25. Gould PJ (1986) Int J Pharm 33:201

    CAS  Google Scholar 

  26. Geng N, Chen JM, Li ZJ, Jiang L, Lu TB (2013) Cryst Growth Des 13:3546

    CAS  Google Scholar 

  27. Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR (2015) Mol Pharm 12:1615

    CAS  PubMed  Google Scholar 

  28. Gu JK, Hill CL, Hu CW (2015) Cryst Growth Des 15:3707

    Google Scholar 

  29. Schultheiss N, Lorimer K, Wolfe S, Desper J (2010) CrystEngComm 12:742

    CAS  Google Scholar 

  30. Chow K, Tong HHY, Lum S, Chow AHL (2008) J Pharm Sci 97:2855

    CAS  PubMed  Google Scholar 

  31. Childs SL, Zaworotko MJ (2009) Cryst Growth Des 9:4208

    CAS  Google Scholar 

  32. Rager T, Hilfiker R (2010) Cryst Growth Des 10:3237

    CAS  Google Scholar 

  33. Zheng SL, Chen JM, Zhang WX, Lu TB (2011) Cryst Growth Des 11:466

    CAS  Google Scholar 

  34. Tothadi S, Sanphui P, Desiraju GR (2014) Cryst Growth Des 14:5293

    CAS  Google Scholar 

  35. Patra R, Titi HM, Goldberg I (2013) Cryst Growth Des 13:1342

    CAS  Google Scholar 

  36. Aakeröy CB, Schultheiss NC, Rajbanshi A, Desper J, Moore C (2009) Cryst Growth Des 9:432

    PubMed  PubMed Central  Google Scholar 

  37. Gavezzotti A, Presti LL (2015) Cryst Growth Des 15:3792

    CAS  Google Scholar 

  38. Das D, Jetti RKR, Boese R, Desiraju GR (2003) Cryst Growth Des 3:675

    CAS  Google Scholar 

  39. Beyer T, Price SL (2000) J Phys Chem B 104:2647

    CAS  Google Scholar 

  40. Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936

    CAS  Google Scholar 

  41. Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654

    CAS  Google Scholar 

  42. Sanphui P, Bolla G, Das U, Mukherjee AK, Nangia A (2013) CrystEngComm 15:34

    CAS  Google Scholar 

  43. Hursthouse MB, Montis R, Tizzard GJ (2011) CrystEngComm 13:3390

    CAS  Google Scholar 

  44. Das D, Desiraju GR (2006) CrystEngComm 8:674

    CAS  Google Scholar 

  45. Akiri K, Cherukuvada S, Rana S, Nangia A (2012) Cryst Growth Des 12:4567

    CAS  Google Scholar 

  46. Thanigaimani K, Khalib NC, Temel E, Arshad S, Razak IA (2015) J Mol Struct 1099:246

    CAS  Google Scholar 

  47. Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978

    CAS  Google Scholar 

  48. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    CAS  Google Scholar 

  49. Lou BY, Perumalla SR, Sun CQC (2015) J Mol Struct 1099:516

    CAS  Google Scholar 

  50. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    CAS  Google Scholar 

  51. Haynes DA, Pietersen LK (2008) CrystEngComm 10:518

    CAS  Google Scholar 

  52. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    CAS  PubMed  Google Scholar 

  53. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    CAS  Google Scholar 

  54. Padmavathy R, Karthikeyan N, Sathya D, Jagan R, Kumar RM, Sivakumar K (2016) RSC Adv 6:68468

    CAS  Google Scholar 

  55. Wu DH, Ge JZ, Cai HL, Zhang W, Xiong RG (2011) CrystEngComm 13:319

    CAS  Google Scholar 

  56. Jones CL, Wilson CC, Thomas LH (2014) CrystEngComm 16:5849

    CAS  Google Scholar 

  57. Sivakumar PK, Kumar MK, Kumar RM, Chakkaravarthi G, Kanagadurai R (2015) Acta Cryst E71:o163

    Google Scholar 

  58. Smirani W, Amri O, Rzaigui M (2008) Acta Cryst E64:o2463

    Google Scholar 

  59. Tang JJ, Chen J, Wang JT, Lu AH, Chen YS (2008) Acta Cryst E64:o244

    Google Scholar 

  60. Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87

    CAS  Google Scholar 

  61. Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937

    CAS  Google Scholar 

  62. Jin SW, Zhang WB, Liu L, Gao HF, Wang DQ, Chen RP, Xu XL (2010) J Mol Struct 975:128

    CAS  Google Scholar 

  63. Jin SW, Zhang WB, Liu L, Wang DQ, He HD, Shi T, Lin F (2011) J Mol Struct 991:1

    CAS  Google Scholar 

  64. Jin SW, Liu L, Wang DQ, Guo JZ (2011) J Mol Struct 1005:59

    CAS  Google Scholar 

  65. Jin SW, Wang DQ, Wang XL, Guo M, Zhao QJ (2008) J Inorg Organomet Polym 18:300

    CAS  Google Scholar 

  66. Bruker (2004) SMART and SAINT. Bruker AXS, Madison

    Google Scholar 

  67. Sheldrick GM (2000) SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, Madison

    Google Scholar 

  68. Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867

    CAS  Google Scholar 

  69. Smith G, White JM (2001) Aust J Chem 54:97

    CAS  Google Scholar 

  70. Jin SW, Guo M, Wang DQ (2012) J Mol Struct 1022:220

    CAS  Google Scholar 

  71. Smith G, Wermuth UD, Healy PC (2005) Acta Cryst E61:o746

    Google Scholar 

  72. Smith G, Wermuth UD, Healy PC, White JM (2011) J Chem Crystallogr 41:1649

    CAS  Google Scholar 

  73. Smith G, Wermuth UD (2014) Acta Cryst E70:430

    Google Scholar 

  74. Smith G, Wermuth UD, White JM (2001) Acta Cryst E57:o1036

    Google Scholar 

  75. Abid S, Hemissi H, Rzaigui M (2007) Acta Cryst E63:o3117

    Google Scholar 

  76. Wei SS, Jin SW, Hu ZF, Zhou Y, Zhou YP (2012) Acta Cryst E68:o3117

    Google Scholar 

  77. Smith G, Wermuth UD, White JM (2003) Acta Cryst E59:o1977

    Google Scholar 

  78. Jin SW, Zhang H, Zhao Y, Jin L, Ye XH, Liu H, Wang DQ (2015) J Mol Struct 1099:304

    CAS  Google Scholar 

  79. Glidewell C, Low JN, Skakle JMS, Wardell JL (2005) Acta Cryst C61:o276

    CAS  Google Scholar 

  80. Dale SH, Elsegood MRJ, Hemmings M, Wilkinson AL (2004) CrystEngComm 6:207

    CAS  Google Scholar 

  81. Wang YF (2012) Acta Cryst E68:o1619

    Google Scholar 

  82. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555

    CAS  Google Scholar 

  83. Sun W, Shan GZ (2015) Acta Cryst E71:o361

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Open Fund of Zhejiang Provincial Top Key Discipline of Forestry Engineering under Grant No. 2014LYGCZ017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 143 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Z., Lu, Y., Jin, S. et al. Crystal and Molecular Structures of Five 3D Organic Salts from 2,6-Dimethylaniline and Organic Acids. J Chem Crystallogr 49, 245–259 (2019). https://doi.org/10.1007/s10870-018-0760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-018-0760-0

Keywords

Navigation