Synthesis and Characterization of Oxonium Functionalized Rhenium Metallaborane

Abstract

The synthesis, characterization, and reaction mechanism of a series of oxonium derivatives of the rhenium containing metalladecaborane [nido-6-Re(CO)3B9H13][NMe4] are reported herein. The oxonium species were synthesized using tetrahydrofuran, 1,4-dioxane, and diethyl ether. The crystal structure of the tetrahydrofuran derivative [2-(CH2)4O-nido-6-Re(CO)3B9H12] was determined and compared to the isostructural manganese compound. The title compound crystallizes in the Triclinic space group P-1 with (a = 7.0835(5) Å, b = 9.6971(6) Å, c = 12.5762(8) Å, α = 73.5750(10)º, β = 75.5520(10)º, γ = 87.061(2)º, volume = 802.22(9), Z = 2). This facile functionalization strategy will facilitate future investigations of rhenium containing metallaboranes and metallacarboranes.

Graphical Abstract

The synthesis, characterization, and reaction mechanism of a series of oxonium derivatives of the rhenium containing metalladecaborane [nido-6-Re(CO)3B9H13][NMe4] are reported, including the structural determination of [2-(CH2)4O-nido-6-Re(CO)3B9H12].

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Borthakur R, Kar S, Barik SK, Bhattacharya S, Kundu G, Varghese B, Ghosh S (2017) Synthesis, chemistry, and electronic structures of group 9 metallaboranes. Inorg Chem 56:1524–1533. https://doi.org/10.1021/acs.inorgchem.6b02626

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Ma P, Littger R, Smith Pellizzeri TM, Zubieta J, Spencer JT (2016) Thermal versus photochemical pathways of a manganese 10-vertex metalladecaborane: [Nido-6-Mn(CO)3B9H13][NMe4]. Polyhedron 109:129–137. https://doi.org/10.1016/j.poly.2016.02.014

    CAS  Article  Google Scholar 

  3. 3.

    Ma P, Littger R, Spencer JT (2018) Thermal and photochemical pathways of a 10-vertex Rhodium metallaborane. Inorg Chim Acta 477:242–247. https://doi.org/10.1016/j.ica.2018.03.009

    CAS  Article  Google Scholar 

  4. 4.

    Ma P, Spencer JT (2018) Photochemistry of metallaborane: a novel method for functionalized carborane synthesis. Inorg Chem Commun 89:78–82. https://doi.org/10.1016/j.inoche.2018.01.009

    CAS  Article  Google Scholar 

  5. 5.

    El-Zaria ME, Janzen N, Valliant JF (2012) Room-temperature synthesis of Re(I) and Tc(I) metallocarboranes. Organometallics 31:5940–5949. https://doi.org/10.1021/om300521j

    CAS  Article  Google Scholar 

  6. 6.

    Goszczyński TM, Kowalski K, Leśnikowski ZJ, Boratyński J (2015) Solid state, thermal synthesis of site-specific protein–boron cluster conjugates and their physicochemical and biochemical properties. Biochim Biophys Acta BBA 1850:411–418. https://doi.org/10.1016/j.bbagen.2014.11.015

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Laskova J, Kozlova A, Białek-Pietras M, Studzińska M, Paradowska E, Bregadze V, Leśnikowski ZJ, Semioshkin A (2016) Reactions of closo-dodecaborate amines. Towards novel bis-(closo-dodecaborates) and closo-dodecaborate conjugates with lipids and non-natural nucleosides. J Organomet Chem 807:29–35. https://doi.org/10.1016/j.jorganchem.2016.02.009

    CAS  Article  Google Scholar 

  8. 8.

    Ma P, Spencer JT (2015) Non-covalent stabilization and functionalization of boron nitride nanosheets (BNNSs) by organic polymers: formation of complex BNNSs-containing structures. J Mater Sci 50:313–323. https://doi.org/10.1007/s10853-014-8590-8

    CAS  Article  Google Scholar 

  9. 9.

    Soriano-Ursúa MA, Das BC, Trujillo-Ferrara JG (2014) Boron-containing compounds: chemico-biological properties and expanding medicinal potential in prevention, diagnosis and therapy. Expert Opin Ther Pat 24:485–500. https://doi.org/10.1517/13543776.2014.881472

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Toppino A, Genady AR, El-Zaria ME, Reeve J, Mostofian F, Kent J, Valliant JF (2013) High yielding preparation of dicarba-closo-dodecaboranes using a Silver(I) mediated dehydrogenative alkyne-insertion reaction. Inorg Chem 52:8743–8749. https://doi.org/10.1021/ic400928v

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Grimes RN (2016) Chap. 2—Structure and bonding. In: Grimes RN (ed) Carboranes, 3rd edn. Academic Press, Boston, pp 7–18

    Chapter  Google Scholar 

  12. 12.

    Hosmane NS (2011) Boron science: new technologies and applications, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  13. 13.

    Ma P, Spencer JT (2018) Cyclodimerization of isocyanates promoted by one large vertex metallaborane. Polyhedron 149:148–152. https://doi.org/10.1016/j.poly.2018.04.028

    CAS  Article  Google Scholar 

  14. 14.

    Ma P, Spencer JT (2018) Catalytic activity of a large Rhodium metallaborane towards the [2 + 2 + 2] cycloaddition of alkynes. Inorg Chim Acta 482:67–69. https://doi.org/10.1016/j.ica.2018.05.041

    CAS  Article  Google Scholar 

  15. 15.

    Bulsink P, Al-Ghamdi A, Joshi P, Korobkov I, Woo T, Richeson D (2016) Capturing Re(I) in an neutral N,N,N pincer Scaffold and resulting enhanced absorption of visible light. Dalton Trans 45:8885–8896. https://doi.org/10.1039/C6DT00661B

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Chakraborty I, Jimenez J, Sameera WMC, Kato M, Mascharak PK (2017) Luminescent Re(I) carbonyl complexes as trackable PhotoCORMs for CO delivery to cellular targets. Inorg Chem 56:2863–2873. https://doi.org/10.1021/acs.inorgchem.6b02999

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Chakraborty I, Tena J, Mascharak PK (2017) Photoactive rhenium carbonyl complexes of N,N,S-donor ligands: contrast in binding modes based on flexibility of ligand frames and nature of ancillary ligands. Inorg Chim Acta 467:358–363. https://doi.org/10.1016/j.ica.2017.08.015

    CAS  Article  Google Scholar 

  18. 18.

    Chanawanno K, Rhoda HM, Hasheminasab A, Crandall LA, King AJ, Herrick RS, Nemykin VN, Ziegler CJ (2016) Using hydrazine to link ferrocene with Re(CO)3: a modular approach. J Organomet Chem 818:145–153. https://doi.org/10.1016/j.jorganchem.2016.06.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Hostachy S, Policar C, Delsuc N (2017) Re(I) carbonyl complexes: multimodal platforms for inorganic chemical biology. Coord Chem Rev 351:172–188. https://doi.org/10.1016/j.ccr.2017.05.004

    CAS  Article  Google Scholar 

  20. 20.

    Ismail MB, Booysen IN, Akerman MP (2017) Rhenium(I) complexes with aliphatic Schiff bases appended to bio-active moieties. Inorg Chem Commun 78:78–81. https://doi.org/10.1016/j.inoche.2017.03.007

    CAS  Article  Google Scholar 

  21. 21.

    Jürgens S, Herrmann WA, Kühn FE (2014) Rhenium and technetium based radiopharmaceuticals: development and recent advances. J Organomet Chem 751:83–89. https://doi.org/10.1016/j.jorganchem.2013.07.042

    CAS  Article  Google Scholar 

  22. 22.

    Louie AS, Harrington LE, Valliant JF (2012) The preparation and characterization of functionalized carboranes and Re/Tc-metallocarboranes as platforms for developing molecular imaging probes: structural and cage isomerism studies. Inorg Chim Acta 389:159–167. https://doi.org/10.1016/j.ica.2012.03.017

    CAS  Article  Google Scholar 

  23. 23.

    Goodreau BH, Spencer JT (1992) Small heteroborane cluster systems. 5. Factors affecting the 2D 11B-11B (boron-11) COSY NMR spectra of terminal- and bridge-substituted pentaborane cluster systems. Inorg Chem 31:2612–2621. https://doi.org/10.1021/ic00038a056

    CAS  Article  Google Scholar 

  24. 24.

    James TL, McDonald GG (1973) Measurement of the self-diffusion coefficient of each component in a complex system using pulsed-gradient fourier transform NMR. J Magn Reson 1969 11:58–61. https://doi.org/10.1016/0022-2364(73)90081-4

    CAS  Article  Google Scholar 

  25. 25.

    Levy GC, Peat IR (1975) The experimental approach to accurate carbon-13 spin-lattice relaxation measurements. J Magn Reson 1969 18:500–521. https://doi.org/10.1016/0022-2364(75)90106-7

    CAS  Article  Google Scholar 

  26. 26.

    Shriver DF, Drezdzon MA (1986) The manipulation of air-sensitive compounds, 2nd edn. Wiley, Chichester

    Google Scholar 

  27. 27.

    Lott JW, Gaines DF (1974) Manganese and rhenium metalloboranes containing tridentate borane ligands tridecahydrononaborate(2-) and (tetrahydrofuran or diethyl ether)dodecahydrononaborate(1-). Inorg Chem 13:2261–2267. https://doi.org/10.1021/ic50139a040

    CAS  Article  Google Scholar 

  28. 28.

    Hope H (1994) Progress in inorganic chemistry, volume 41. Wiley, Chichester

    Google Scholar 

  29. 29.

    APEX II (2011) APEX II, Data Collection Software. Bruker-AXS Inc., Madison

    Google Scholar 

  30. 30.

    SAINT plus (2013) SAINT plus, Data Reduction Software. Bruker-AXS Inc., Madison

    Google Scholar 

  31. 31.

    Sheldrick GM (1996) SADABS. University of Göttingen

  32. 32.

    Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Ma P, Smith TM, Zubieta J, Spencer JT (2014) Synthesis of alkoxy derivatives of the 10-vertex manganadecaborane [nido-6-Mn(CO)3B9H13][NMe4]. Inorg Chem Commun 46:223–225. https://doi.org/10.1016/j.inoche.2014.04.038

    CAS  Article  Google Scholar 

  34. 34.

    Bernard R, Cornu D, Perrin M, Scharff JP, Miele P (2004) Synthesis and X-ray structural characterisation of the tetramethylene oxonium derivative of the hydrodecaborate anion. A versatile route for derivative chemistry of [B10H10]2–. J Organomet Chem 689:2581–2585. https://doi.org/10.1016/j.jorganchem.2004.05.014

    CAS  Article  Google Scholar 

  35. 35.

    Lesnikowski ZJ (2009) Nucleoside–boron cluster conjugates—beyond pyrimidine nucleosides and carboranes. J Organomet Chem 694:1771–1775. https://doi.org/10.1016/j.jorganchem.2008.12.061

    CAS  Article  Google Scholar 

  36. 36.

    Plešek J, Grüner B, Heřmánek S, Báča J, Mareček V, Jänchenová J, Lhotský A, Holub K, Selucký P, Rais J, Císařová I, Čáslavský J (2002) Synthesis of functionalized cobaltacarboranes based on the closo-[(1,2-C2B9H11)2–3,3′-Co]—ion bearing polydentate ligands for separation of M3+ cations from nuclear waste solutions. Electrochemical and liquid–liquid extraction study of selective transfer of M3+ metal cations to an organic phase. Molecular structure of the closo-[(8-(2-CH3O-C6H4-O)-(CH2CH2O)2—1,2-C2B9H10)-(1′,2′-C2B9H11)-3,3′-Co]Na determined by X-ray diffraction analysis. Polyhedron 21:975–986. https://doi.org/10.1016/S0277-5387(02)00865-3

    Article  Google Scholar 

  37. 37.

    Sivaev IB, Kulikova NY, Nizhnik EA, Vichuzhanin MV, Starikova ZA, Semioshkin AA, Bregadze VI (2008) Practical synthesis of 1,4-dioxane derivative of the closo-dodecaborate anion and its ring opening with acetylenic alkoxides. J Organomet Chem 693:519–525. https://doi.org/10.1016/j.jorganchem.2007.11.027

    CAS  Article  Google Scholar 

  38. 38.

    Sivaev IB, Starikova ZA, Sjöberg S, Bregadze VI (2002) Synthesis of functional derivatives of the [3,3′-Co(1,2-C2B9H11)2] anion. J Organomet Chem 649:1–8. https://doi.org/10.1016/S0022-328X(01)01352-3

    CAS  Article  Google Scholar 

  39. 39.

    Zhizhin KY, Mustyatsa VN, Malinina EA, Matveev EY, Goeva LV, Polyakova IN, Kuznetsov NT (2005) Nucleophilic cleavage of cyclic substituents in derivatives of the closo-decaborate anion. Russ J Inorg Chem 50:203209

    Google Scholar 

  40. 40.

    Semioshkin AA, Sivaev IB, Bregadze VI (2008) Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans 0:977–992. https://doi.org/10.1039/B715363E

    CAS  Article  Google Scholar 

  41. 41.

    Matveev EY, Kubasov AS, Razgonyaeva GA, Polyakova IN, Zhizhin KY, Kuznetsov NT (2015) Reactions of the [B10H10]2–anion with nucleophiles in the presence of halides of group IIIA and IVB elements. Russ J Inorg Chem 60:776–785. https://doi.org/10.1134/S0036023615070104

    CAS  Article  Google Scholar 

  42. 42.

    Kim Y, Deng H, Meek DW, Wojcicki A (2002) Unusual molecular hydrogen complex of rhenium: a long hydrogen-hydrogen bond and inertness to substitution. https://pubs.acs.org/doi/abs/10.1021/ja00163a050. Accessed 10 Oct 2018

  43. 43.

    Janoušek Z, Plešek J, Heřmánek S, Baše K, Todd LJ, Wright WF (1981) Synthesis and characteristics of sulfur interligand bridge-derivatives and of some S-substituted compounds in the (C2B9H11)2Co series. Conformations of (C2B9H11)2Mx– metallocarboranes. Collect Czechoslov Chem Commun 46:2818–2833. https://doi.org/10.1135/cccc19812818

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the Department of Chemistry and the Forensic and National Security Sciences Institute (FNSSI) for their generous support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to James T. Spencer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, P., Pellizzeri, T.M.S., Zubieta, J. et al. Synthesis and Characterization of Oxonium Functionalized Rhenium Metallaborane. J Chem Crystallogr 50, 14–20 (2020). https://doi.org/10.1007/s10870-018-0749-8

Download citation

Keywords

  • Metallaborane
  • Rhenium
  • Oxonium derivatives
  • Functionalization
  • Metalladecaborane