Skip to main content
Log in

Six New Complexes Based on Substituted Pyridazine Ligands: Structures and Luminescent Properties

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Three structurally related ligands 3-chloro-6-(benzoimidazol-1-yl)pyridazine (L 1), 3-chloro-6-(1,2,4-triazol-1-yl)pyridazine (L 2) and 3,6-bis(imidazol-1-yl)pyridazine (L 3) were designed and synthesized, and six new Zn(II), Co(II), Cu(II) and Cd(II) complexes, namely, [M(L 1)2Cl2] [M = Zn (1) and Co (2)], [Cu(L 2)2(NO3)2(H2O)] (3), [Cu(L 2)2Cl2] (4), [CuL 3(CH3COO)2] (5) and [CdL 3(SCN)2] (6) were synthesized and characterized by elemental analyses, IR spectra as well as single-crystal X-ray diffraction analysis. The analysis reveals that complexes 1, 2 and 3 have a mononuclear structure, 1 and 2 have a similar structure. Complex 3 features a 1D structure with intermolecular O–H⋯O hydrogen bonding interactions. Complex 4 shows a 1D chain structure with bridging Clˉ ions. Complex 5 exhibits a 1D ladder structure. The 2D framework of 6 features are rectangular grid with a (4, 4) topology. Additionally, photoluminescence properties of ligands L 1, L 3 and complexes 1, 2 and 6 have been studied and discussed.

Graphical Abstract

Six new metal-organic complexes were synthesized and structurally characterized, complexes 1, 2 and 3 have a mononuclear structure, complexes 4 and 5 show 1D chain structure, the 2D framework of 6 has a rectangle grid with a (4, 4) topology, moreover, photoluminescence properties of ligands L 1, L 3 and complexes 1, 2 and 6 have been studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen DM, Zhang XP, Shi W, Cheng P (2015) Inorg Chem 54:5512–5518

    Article  CAS  Google Scholar 

  2. Liao PQ, Zhou DD, Zhu AX, Jiang L, Lin RB, Zhang JP, Chen XM (2012) J Am Chem Soc 134:17380–17383

    Article  CAS  Google Scholar 

  3. Elsaidi SK, Mohamed MH, Pham T, Hussein T, Wojtas L, Zaworotko MJ, Space B (2016) Cryst Growth Des 16:1071–1080

    Article  CAS  Google Scholar 

  4. Wang XF, Zhou SB, Du CC, Wang DZ, Jia DZ (2017) J Solid State Chem 252:72–85

    Article  CAS  Google Scholar 

  5. Sun GM, Song YM, Liu Y, Tian XZ, Huang HX, Zhu Y, Yuan ZJ, Feng XF, Luo MB, Liu SJ, Xu WY, Luo F (2012) CrystEngComm, 14:5714–5716

    Article  CAS  Google Scholar 

  6. Arci M, Yesilel OZ, Tas M (2015) Cryst Growth Des 15:3024–3031

    Article  Google Scholar 

  7. Wang DZ, Fan JZ, Jia DZ, Du CC (2016) CrystEngComm 18:6708–6723

    Article  CAS  Google Scholar 

  8. Zhang T, Song FJ, Lin WB (2012) Chem Commun 48:8766–8768

    Article  CAS  Google Scholar 

  9. Horike S, Dinca M, Tamaki K, Long JR (2008) J Am Chem Soc 130:5854–5855;

    Article  CAS  Google Scholar 

  10. Fan JZ, Du CC, Wang DZ (2016) Polyhedron 117:487–495

    Article  CAS  Google Scholar 

  11. Kong XJ, Wu YL, Long LS, Zheng LS, Zheng ZP (2009) J Am Chem Soc 131:6918–6919

    Article  CAS  Google Scholar 

  12. Zhao JP, Zhao C, Song WC, Wang L, Xie YB, Li JR, Bu XH (2015) Dalton Trans 44:10289–10296

    Article  CAS  Google Scholar 

  13. Aijaz A, Lama P, Sanudo EC, Mishra R, Bharadwaj PK (2010) New J Chem 34:2502–2514

    Article  CAS  Google Scholar 

  14. Zhou SB, Wang XF, Du CC, Wang DZ, Jia DZ (2017) CrystEngComm 19:3124–3137

    Article  CAS  Google Scholar 

  15. Hu FL, Wang SL, Wu B, Yu H, Wang F, Liang JP (2014) CrystEngComm 16:6354–6363

    Article  Google Scholar 

  16. Dong XY, Si CD, Fan Y, Hu DC, Yao XQ, Yang YX, Liu JC (2016) Cryst Growth Des 16:2062–2073

    Article  CAS  Google Scholar 

  17. Maity DK, Halder A, Ghosh S, Ghoshal D (2016) Cryst Growth Des 16:4793–4804

    Article  CAS  Google Scholar 

  18. Xing K, Fan RQ, Gao S, Wang XM, Du X, Fang R, Yang YL (2016) Dalton Trans 45:4863–4878

    Article  CAS  Google Scholar 

  19. Singh N, Anantharaman G (2015) Polyhedron 90:202–213

    Article  CAS  Google Scholar 

  20. Sun D, Han LL, Yuan S, Deng YK, Xu MZ, Song DF (2013) Cryst Growth Des 13:377–385

    Article  CAS  Google Scholar 

  21. Liu GX (2016) J Chem Crystallogr 46:213–221

    Article  CAS  Google Scholar 

  22. Ren C, Hou L, Liu B, Yang GP, Wang YY, Shi QZ (2011) Dalton Trans 40:793–804

    Article  CAS  Google Scholar 

  23. Luo L, Wang P, Xu GC, Liu Q, Chen K, Lu Y, Zhao Y, Sun WY (2012) Cryst Growth Des 12:2634–2645

    Article  CAS  Google Scholar 

  24. Wang XF, Du CC, Zhou SB, Wang DZ (2017) J Mol Struct 1128:103–110

    Article  CAS  Google Scholar 

  25. Hu B, Geng J, Zhang L, Huang W (2014) J Solid State Chem 215:102–108

    Article  CAS  Google Scholar 

  26. Aricl M, Yesilel OZ, Tas M, Demiral H, Erer H (2016) Cryst Growth Des 16:5448–5459

    Article  Google Scholar 

  27. Li JP, Fan JZ, Wang DZ (2016) J Solid State Chem 239:251–258

    Article  CAS  Google Scholar 

  28. Chen JQ, Cai YP, Fang HC, Zhou ZY, Zhan XL, Zhao G, Zhang Z (2009) Cryst Growth Des 9:1605–1613

    Article  CAS  Google Scholar 

  29. Lu XX, Luo YH, Xu Y, Zhang H (2015) CrystEngComm 17:1631–1636

    Article  CAS  Google Scholar 

  30. Liu WT, Ou YC, Lin ZJ, Tong ML (2010) CrystEngComm 12:3482–3489

    Google Scholar 

  31. Yang F, Li BY, Xu W, Li GH, Zhou Q, Hua J, Shi Z, Feng SH (2012) Inorg Chem 51:6813–6820

    Article  CAS  Google Scholar 

  32. Wang DZ, Li JP, Fan JZ, Jia DZ (2016) Polyhedron 111:123–131

    Article  CAS  Google Scholar 

  33. Tong XL, Wang DZ, Hu TL, Song WC, Tao Y, Bu XH (2009) Cryst Growth Des 5:2280–2286

    Article  Google Scholar 

  34. Ding B, Yang P, Liu YY, Wang Y, Du GX (2013) CrystEngComm 15:2490–2503

    Article  CAS  Google Scholar 

  35. Guo HD, Yan YN, Guo XM, Wang N, Qi YJ (2016) J Solid State Chem 1108:134–143

    CAS  Google Scholar 

  36. Liu QY, Guo J, Wang YL, Wei JJ, Chen Y, Hu CH (2013) J Coord Chem 66:530–538

    Article  CAS  Google Scholar 

  37. Jeong S, Song S, Jeong S, Oh M, Liu XF, Kim D, Moon D, Lah MS (2011) Inorg Chem 50:12133–12140

    Article  CAS  Google Scholar 

  38. Wang YL, Chen L, Liu CM, Zhang YQ, Yin SG, Liu QY (2015) Inorg Chem 54:11362–11368

    Article  CAS  Google Scholar 

  39. Li L, Hu TL, Li JR, Wang DZ, Zeng YF, Bu XH (2007) CrystEngComm 9:412–420

    Article  CAS  Google Scholar 

  40. Agarwal RA, Mukherjee S, Sanudo EC, Ghosh SK, Bharadwaj PK (2014) Cryst Growth Des 14:5585–5592

    Article  CAS  Google Scholar 

  41. Bruker AXS (1998) SAINT software reference manual. Bruker AXS, Madison

    Google Scholar 

  42. Sheldrick GM (1994) SADABS, Siemens Area Detestor Absorption Correction Program. University of Gottingen, Gottingen

    Google Scholar 

  43. Sheldrick GM (1997) SHELXTL NT Version 5.1. Program for solution and refinement of crystal structures. University of Göttingen, Gottingen

    Google Scholar 

  44. Jin SW, Wang DQ (2012) J Coord Chem 65:1937–1952

    Article  CAS  Google Scholar 

  45. Shao YL, Cui YH, Gu JZ, Wu J, Wang YW (2015) RSC Adv 5:87484–87495

    Article  CAS  Google Scholar 

  46. Linfoot CL, Leitl MJ, Richardson P, Rausch AF, Chepelin O, White FJ, Yersin H, Robertson N (2014) Inorg Chem 53:10854–10861

    Article  CAS  Google Scholar 

  47. Gai YL, Jiang FL, Chen L, Bu Y, Wu MY, Zhou K, Pan J, Hong MC (2013) Dalton Trans 42:9954–9965

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Funds of XinJiang, China (No. 2015 211C266).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duo-Zhi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 263 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, SB., Du, CC., Wang, Xf. et al. Six New Complexes Based on Substituted Pyridazine Ligands: Structures and Luminescent Properties. J Chem Crystallogr 47, 215–225 (2017). https://doi.org/10.1007/s10870-017-0699-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-017-0699-6

Keywords

Navigation