Skip to main content
Log in

Face-to-Face Stacking and Saddle Distortion of 5,10,15,20-Tetra(4-hydroxyphenyl)porphyrinatocopper(II) in Two New Solvates

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The crystal structures of the methanol nitrobenzene sesquisolvate hemihydrate (1) and the 3.75-dimethyl sulfoxide solvate monohydrate (2) of 5,10,15,20-tetra(4-hydroxyphenyl)porphyrinatocopper(II) (CuTOHPP) are reported. Both 1 and 2 crystallise in the triclinic system with two molecules of the metalloporphyrin in the asymmetric unit (Z′ = 2). Compound 1 exhibits an extended two-dimensional hydrogen-bonded network in the crystal, whereas discrete hydrogen-bonded assemblies of CuTOHPP and solvent molecules are found in 2. Face-to-face stacking of the metalloporphyrin units and O–H⋯O hydrogen bonding interactions are identified as the most important solid-state organisational features in both 1 and 2. Saddle distortion of the metalloporphyrin units is encountered in both new solvates and there are no Cu⋯O interactions, despite four hydroxy groups on each porphyrin ligand and the presence of oxygen donor solvent molecules.

Graphical Abstract

The methanol nitrobenzene sesquisolvate hemihydrate and the 3.75-dimethyl sulfoxide solvate monohydrate of 5,10,15,20-tetra(4-hydroxyphenyl)porphyrinatocopper(II) both crystallise in the triclinic system with two molecules in the asymmetric unit (Z′ = 2), featuring face-to-face stacking of the saddle-distorted metalloporphyrin units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The structure of CuTOHPP acetophenone tetrasolvate (CSD refcode: TEFREB) was described in the triclinic space group P1. There is, however, evidence that higher symmetry is present. The monoclinic space group C2 seems to be more appropriate than P1. A revised CIF has been submitted to The Cambridge Crystallographic Data Centre (CCDC: 1441615). Details are given in the supplementary material.

References

  1. Gao W-Y, Chrzanowski M, Ma S (2014) Chem Soc Rev 43:5841–5866

    Article  CAS  Google Scholar 

  2. Zha Q, Rui X, Wie T, Xie Y (2014) CrystEngComm 16:7371–7384

    Article  CAS  Google Scholar 

  3. Guo Z, Chen B (2015) Dalton Trans 44:14574–14583

    Article  CAS  Google Scholar 

  4. Vinodu M, Goldberg I (2005) CrystEngComm 7:133–138

    Article  CAS  Google Scholar 

  5. Gunter MJ (2006) Struct Bond 121:263–295

    Article  CAS  Google Scholar 

  6. Lipstman S, Goldberg I (2008) J Mol Struct 890:101–106

    Article  CAS  Google Scholar 

  7. Titi HM, Tripuramallu BK, Goldberg I (2016) CrystEngComm 18:3318–3339

    Article  CAS  Google Scholar 

  8. Medforth CJ, Wang Z, Martin KE, Song Y, Jacobsen JL, Shelnutt JA (2009) Chem Commun 24:7261–7277

    Article  Google Scholar 

  9. Ishihara S, Labuta J, Rossom WV, Ishikawa D, Minami K, Hilla JP, Ariga K (2014) Phys Chem Chem Phys 16:9713–9746

    Article  CAS  Google Scholar 

  10. Nakagaki S, Ferreira GKB, Ucoski GM, de Freitas Castro KAD (2013) Molecules 18:7279–7308

    Article  CAS  Google Scholar 

  11. Kumar S, Wani MY, Arranja CT, e Silva JDA, Avula B, Sobral AJFN (2015) J Mater Chem A 3:19615–19637

    Article  CAS  Google Scholar 

  12. Balaban TS (2005) Acc Chem Res 38:612–623

    Article  CAS  Google Scholar 

  13. So MC, Wiederrecht GP, Mondloch JE, Hupp JT, Farha OK (2015) Chem Commun 51:3501–3510

    Article  CAS  Google Scholar 

  14. Marek PL, Hahn H, Balaban TS (2011) Energy. Environ Sci 4:2366–2378

    Article  CAS  Google Scholar 

  15. Zhang T, Lin W (2014) Chem Soc Rev 43:5982–5993

    Article  CAS  Google Scholar 

  16. Würthner F, Kaiser TE, Saha-Möller CR (2011) Angew Chem Int Ed 50:3376–3410

    Article  Google Scholar 

  17. Shelnutt JA, Song X-Z, Ma J-G, Jia S-L, Jentzen W, Medforth CJ (1998) Chem Soc Rev 27:31–42

    Article  CAS  Google Scholar 

  18. Byrn MP, Curtis CJ, Hsiou Y, Khana SI, Sawin PA, Tendick SK, Terzis A, Strouse CE (1993) J Am Chem Soc 115:9480–9497

    Article  CAS  Google Scholar 

  19. Goldberg I, Krupitsky H, Stein Z, Hsiou Y, Strouse CE (1994) Supramol Chem 4:203–221

    Article  CAS  Google Scholar 

  20. Diskin-Posner Y, Patra GK, Goldberg I (2002) Chem Commun 1420–1421. doi:10.1039/B202791G

  21. Diskin-Posner Y, Patra GK, Goldberg I (2002) CrystEngComm 4:296–301

    Article  CAS  Google Scholar 

  22. Vinodu M, Goldberg I (2004) New J Chem 28:1250–1254

    Article  CAS  Google Scholar 

  23. Diskin-Posner Y, Patra GK, Goldberg I (2002) Acta Crystallogr C 58:m344–m346

    Article  Google Scholar 

  24. George S, Lipstman S, Muniappan S, Goldberg I (2006) CrystEngComm 8:417–424

    Article  CAS  Google Scholar 

  25. George S, Goldberg I (2006) Cryst Growth Des 6:755–762

    Article  CAS  Google Scholar 

  26. Lipstman S, Goldberg I (2009) Acta Crystallogr C 65:o3–o7

    Article  Google Scholar 

  27. de Oliveira VE, Correa CC, Pinheiro CB, Diniz R, de Oliveira LFC (2011) J Mol Struct 995:125–129

    Article  Google Scholar 

  28. Nandy P, Pedireddi V (2014) Acta Crystallogr A 70:C554

    Article  Google Scholar 

  29. Seidel RW, Goddard R, Oppel IM (2014) CrystEngComm 16:10505–10511

    Article  CAS  Google Scholar 

  30. Roy S, Titi HM, Goldberg I (2016) CrystEngComm 18:3372–3382

    Article  CAS  Google Scholar 

  31. Hoard JL (1975) In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  32. Lu G, Zhang X, Caia X, Jiang J (2009) J Mater Chem 19:2417–2424

    Article  CAS  Google Scholar 

  33. CrysAlisPro Version 1.171.37.35 (2014) Agilent Technologies UK Ltd, Oxford, UK

  34. Blessing RH (1995) Acta Crystallogr A 51:33–38

    Article  Google Scholar 

  35. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  36. Sheldrick GM (2015) Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  37. Spek AL (2009) Acta Crystallogr D 65:148–155

    Article  CAS  Google Scholar 

  38. Flack HD (1983) Acta Crystallogr A 39:876–881

    Article  Google Scholar 

  39. Brandenburg K (2014) Diamond Version 3.2k, Crystal Impact GbR, Bonn, Germany

  40. Buchler JW (1975) In: Smith KM (ed) Porphyrins and metalloporphyrins. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  41. Adler AD, Longo FR, Kampas F, Kim J (1970) J Inorg Nucl Chem 32:2443–2445

    Article  CAS  Google Scholar 

  42. Gouterman M (1961) J Mol Spectrosc 6:138–163

    Article  CAS  Google Scholar 

  43. Scheidt WR, Lee YJ (1987) Struct Bond 64:1–70

    Article  CAS  Google Scholar 

  44. Munro OQ, Bradley JC, Hancock RD, Marques HM, Marsicano F, Wade PW (1992) J Am Chem Soc 114:7218–7230

    Article  CAS  Google Scholar 

  45. Jentzen W, Song X-Z, Shelnutt JA (1997) J Phys Chem B 101:1684–1699

    Article  CAS  Google Scholar 

  46. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555–1573

    Article  CAS  Google Scholar 

  47. Steiner T (2002) Angew Chem Int Ed 41:48–76

    Article  CAS  Google Scholar 

  48. Wells AF (1984) Structural inorganic chemistry. Oxford University Press, Oxford

    Google Scholar 

  49. Brown ID (1987) J Solution Chem 16:205–224

    Article  CAS  Google Scholar 

  50. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  51. Groom CR, Allen FH (2014) Angew Chem Int Ed 53:662–671

    Article  CAS  Google Scholar 

  52. Diskin-Posner Y, Goldberg I (1999) Chem Commun 1961–1962. doi:10.1039/A906085E

  53. Abrahams BF, Hoskins BF, Michail DM, Robson R (1994) Nature 369:727–729

    Article  CAS  Google Scholar 

  54. Hunter CA (1994) Chem Soc Rev 23:101–109

    Article  CAS  Google Scholar 

  55. Grimme S (2008) Angew Chem Int Ed 47:3430–3434

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Wanning Hu for assistance in preparing the samples studied. The Deutsche Forschungsgemeinschaft (DFG) is acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger W. Seidel.

Additional information

In memoriam Professor Teodor Silviu Balaban (1958–2016).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 662 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, R.W., Goddard, R. & Oppel, I.M. Face-to-Face Stacking and Saddle Distortion of 5,10,15,20-Tetra(4-hydroxyphenyl)porphyrinatocopper(II) in Two New Solvates. J Chem Crystallogr 47, 187–197 (2017). https://doi.org/10.1007/s10870-017-0696-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-017-0696-9

Keywords

Navigation