Structure Determination of 2-(3,4-Dihydroisoquinolin-2(1H)-yl)-2-[4-(dimethylamino)phenyl]acetonitrile, an α-Amino Nitrile Obtained by a Modified Strecker Reaction

Abstract

Modified Strecker synthesis between 4-(dimethylamino)benzaldehyde (1), 1,2,3,4-tetrahydroisoquinoline (2), and potassium cyanide in the presence of silica-supported sulfuric acid in MeCN at room temperature produced the new compound 2-(3,4-dihydroisoquinolin-2(1H)-yl)-2-[4-(dimethylamino)phenyl]acetonitrile (3). The yellow prisms obtained from petroleum ether:ethyl acetate (30:1) mixture at 25 °C are monoclinic, space group P21/c, with a = 13.2197(9) Å, b = 6.4454(4) Å, c = 19.1092(13) Å, β = 95.051(8)°, V = 1621.90(19) Å3, Z = 4. The refinement converged to R = 0.0434, wR 2 = 0.1247, S = 1.02. Molecules of 3 interact via C–H⋯N and C–H⋯π contacts to form zig-zag ribbons that run along the a-axis and stack along the c-axis, connected by van der Waals interactions.

Graphical Abstract

Zig-zag ribbons connected by C–H⋯N and C–H⋯π interactions dominate the structure of the new α-amino nitrile 2-(3,4-dihydroisoquinolin-2(1H)-yl)-2-[4-(dimethylamino)phenyl]acetonitrile synthesized by a one-pot Strecker reaction.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112(6):3083–3135. doi:10.1021/cr100233r

    Article  Google Scholar 

  2. 2.

    Biggs-Houck JE, Younai A, Shaw JT (2010) Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr Opin Chem Biol 14(3):371–382. doi:10.1016/j.cbpa.2010.03.003

    CAS  Article  Google Scholar 

  3. 3.

    Ramón DJ, Yus M (2005) Asymmetric multicomponent reactions (AMCRs): the new frontier. Angew Chem Int Ed 44(11):1602–1634. doi:10.1002/anie.200460548

    Article  Google Scholar 

  4. 4.

    Gröger H (2003) Catalytic enantioselective Strecker reactions and analogous syntheses. Chem Rev 103(8):2795–2828. doi:10.1021/cr020038p

    Article  Google Scholar 

  5. 5.

    Vargas Mendez LY, Kouznetsov VV (2013) First girgensohnine analogs prepared through InCl3-catalyzed Strecker reaction and their bioprospection. Curr Org Synth 10(6):969–973. doi:10.2174/157017941006140206105449

    CAS  Article  Google Scholar 

  6. 6.

    Harusawa S, Hamada Y, Shioiri T (1979) Diethyl phosphorocyanidated (DEPC). A novel reagent for the classical Strecker’s α-amino nitrile synthesis. Tetrahedron Lett 20(48):4663–4666. doi:10.1016/S0040-4039(01)86677-6

    Article  Google Scholar 

  7. 7.

    Nakamura S, Sato N, Sugimoto M, Toru T (2004) A new approach to enantioselective cyanation of imines with Et2AlCN. Tetrahedron 15(9):1513–1516. doi:10.1016/j.tetasy.2004.03.040

    CAS  Article  Google Scholar 

  8. 8.

    Li Z, Ma Y, Xu J, Shi J, Cai H (2010) One-pot three-component synthesis of α-aminonitriles using potassium hexacyanoferrate(II) as an eco-friendly cyanide source. Tetrahedron Lett 51(30):3922–3926. doi:10.1016/j.tetlet.2010.05.088

    CAS  Article  Google Scholar 

  9. 9.

    Rueping M, Sugiono E, Azap C (2006) A highly enantioselective Brønsted acid catalyst for the Strecker reaction. Angew Chem Int Ed 45(16):2617–2619. doi:10.1002/anie.200504344

    Article  Google Scholar 

  10. 10.

    Reddy SS, Reddy BRP, Reddy PVG (2015) Propylphosphonic anhydride (T3P®) catalyzed one-pot synthesis of α-aminonitriles. Chin Chem Lett 26(6):739–743. doi:10.1016/j.cclet.2015.03.021

    CAS  Article  Google Scholar 

  11. 11.

    Zhang G-W, Zheng D-H, Nie J, Wang T, Ma J-A (2010) Bronsted acid-catalyzed efficient Strecker reaction of ketones, amines and trimethylsilyl cyanide. Org Biomol Chem 8(6):1399–1405. doi:10.1039/B924272D

    CAS  Article  Google Scholar 

  12. 12.

    Ranu BC, Dey SS, Hajra A (2002) Indium trichloride catalyzed one-step synthesis of α-amino nitriles by a three-component condensation of carbonyl compounds, amines and potassium cyanide. Tetrahedron 58(13):2529–2532. doi:10.1016/S0040-4020(02)00132-1

    CAS  Article  Google Scholar 

  13. 13.

    Bakherad M, Keivanloo A, Siavashi M, Omidian M (2014) Three-component synthesis of imidazo[1,2-c]pyrimidines using silica sulfuric acid (SSA). Chin Chem Lett 25(1):149–151. doi:10.1016/j.cclet.2013.10.013

    CAS  Article  Google Scholar 

  14. 14.

    Kantam ML, Mahendar K, Sreedhar B, Choudary BM (2008) Synthesis of α-amino nitriles through Strecker reaction of aldimines and ketoimines by using nanocrystalline magnesium oxide. Tetrahedron 64(15):3351–3360. doi:10.1016/j.tet.2008.01.128

    CAS  Article  Google Scholar 

  15. 15.

    Resnick L, Galante RJ (2006) A practical synthesis of 3-ethyl-l-norvaline. Tetrahedron 17(5):846–849. doi:10.1016/j.tetasy.2006.02.002

    CAS  Article  Google Scholar 

  16. 16.

    Veisi H (2010) Silica sulfuric acid (SSA) as a solid acid heterogeneous catalyst for one-pot synthesis of substituted pyrroles under solvent-free conditions at room temperature. Tetrahedron Lett 51(16):2109–2114. doi:10.1016/j.tetlet.2010.02.052

    CAS  Article  Google Scholar 

  17. 17.

    Wu H, Shen Y, Fan L-y, Wan Y, Shi D-q (2006) Solid silica sulfuric acid (SSA) as a novel and efficient catalyst for acetylation of aldehydes and sugars. Tetrahedron 62(34):7995–7998. doi:10.1016/j.tet.2006.06.038

    CAS  Article  Google Scholar 

  18. 18.

    Wu H, Shen Y, Fan L-y, Wan Y, Zhang P, Chen C-f, Wang W-x (2007) Stereoselective synthesis of β-amino ketones via direct Mannich-type reaction catalyzed with silica sulfuric acid. Tetrahedron 63(11):2404–2408. doi:10.1016/j.tet.2007.01.015

    CAS  Article  Google Scholar 

  19. 19.

    Carreño Otero AL, Vargas Méndez LY, Duque L JE, Kouznetsov VV (2014) Design, synthesis, acetylcholinesterase inhibition and larvicidal activity of girgensohnine analogs on Aedes aegypti, vector of dengue fever. Eur J Med Chem 78:392–400. doi:10.1016/j.ejmech.2014.03.067

    Article  Google Scholar 

  20. 20.

    Groom CR, Bruno IJ, Lightfoot MP, Ward SC (2016) The Cambridge structural database. Acta Crystallogr Sect B 72 (2):171–179. doi:10.1107/S2052520616003954

    CAS  Article  Google Scholar 

  21. 21.

    Rigaku/MSC I (2000) CRYSTALCLEAR, Software Users Guide, version 1.3.6. Rigaku/MSC I, The Woodlands

    Google Scholar 

  22. 22.

    Sheldrick GM (2015) SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr Sect A 71(1):3–8. doi:10.1107/S2053273314026370

    Article  Google Scholar 

  23. 23.

    Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C 71(1):3–8. doi:10.1107/S2053229614024218

    Article  Google Scholar 

  24. 24.

    Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42(2):339–341. doi:10.1107/S0021889808042726

    CAS  Article  Google Scholar 

  25. 25.

    Brandenburg K (1999) DIAMOND. 3.0 edn. Crystal Impact GbR, Bonn

    Google Scholar 

  26. 26.

    Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr Sect D 65(2):148–155. doi:10.1107/S090744490804362X

    CAS  Article  Google Scholar 

  27. 27.

    Allen FH, Johnson O, Shields GP, Smith BR, Towler M (2004) CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs. J Appl Crystallogr 37(2):335–338. doi:10.1107/S0021889804003528

    CAS  Article  Google Scholar 

  28. 28.

    Boeyens JCA (1978) The conformation of six-membered rings. J Cryst Mol Struct 8(6):317–320. doi:10.1007/bf01200485

    Article  Google Scholar 

  29. 29.

    Etter MC, MacDonald JC, Bernstein J (1990) Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr Sect B 46(2):256–262. doi:10.1107/S0108768189012929

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Vicerrectoría de Investigación y Extensión, Universidad Industrial de Santander (UIS) and Laboratorio de Rayos-X-Parque Tecnológico Guatiguará, UIS, Piedecuesta, Santander, Colombia, for the support to the diffraction data acquisition facilities. Financial support from Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia, COLCIENCIAS, RC-Contract 624-2014, is gratefully acknowledged. A.L.C.O. thanks COLCIENCIAS for the fellowship No. 567/2012 to carry out Doctoral studies.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Graciela Díaz de Delgado.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carreño Otero, A.L., Quintana, J.H., Henao, J.A. et al. Structure Determination of 2-(3,4-Dihydroisoquinolin-2(1H)-yl)-2-[4-(dimethylamino)phenyl]acetonitrile, an α-Amino Nitrile Obtained by a Modified Strecker Reaction. J Chem Crystallogr 47, 166–172 (2017). https://doi.org/10.1007/s10870-017-0693-z

Download citation

Keywords

  • α-Amino nitriles
  • Multi-component reactions (MCRs)
  • Three component Strecker reaction
  • Girgensohnine analogues