Skip to main content
Log in

Mucochloric Pseudoanhydrides

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Thermal or chemical dehydration of mucochloric acid produces diastereomeric mucochloric pseudoanhydrides. The meso form crystallizes in the monoclinic system, space group P2(1)/n, with a = 6.77742(15) Å, b = 18.8757(5) Å, c = 9.0724(2) Å, β = 93.959(2)°, V = 1157.85(5) Å3. The racemate crystallizes in the tetragonal space group I4(1)/a with a = b = 26.4089(8) Å, c = 6.5757(3) Å, V = 4586.1(3) Å3. The central exocyclic C–O bonds are shortened [average 1.398(4) Å] compared to the endocyclic C–O bonds [average 1.430(5) Å]. This is attributed to the weaker basicity of the open carboxylate compared to the conjugate base of the pseudoacid. Modest ab initio calculations support the distinction.

Graphical Abstract

Both diastereomeric pseudoanhydrides of mucochloric acid have dissimilar endocyclic and exocyclic C–O bond lengths, supported by the weaker basicity of the carboxylate compared to the pseudo acyloxy late group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mowry DT (1950) Mucochloric Acid. I. Reactions of the Pseudo Acid Group. J Am Chem Soc 72:2535–2537

    Article  CAS  Google Scholar 

  2. Demaison J, Csaszar AG (2012) Equilibrium CO bond lengths. J Mol Struct 1023:7–14

    Article  CAS  Google Scholar 

  3. Chu SSC, Jeffrey GA (1968) The Refinement of the Crystal Structures of β-d-Glucose and Cellobiose. Acta Crystallogr A B24:830–838

    Article  Google Scholar 

  4. Bermann H, Chu SSC, Jeffrey GA (1967) Anomeric Bond character in the Pyranose Sugars. Science 157:1576–1577

    Article  Google Scholar 

  5. Jones PG, Kirby AJ (1984) Simple correlation between bond length and reactivity. Combined use of crystallographic and kinetic to explore a reaction coordinate. J Am Chem Soc 106:6207–6212

    Article  CAS  Google Scholar 

  6. Briggs AJ, Glenn R, Jones PG, Kirby AJ, Ramaswamy P (1984) Bond lengths and reactivity. Stereoelectronic effects on bonding in acetals and glucosides. J Am Chem Soc 106:6200–6206

    Article  CAS  Google Scholar 

  7. Valente EJ, Martin SB, Sullivan LD (1998) Pseudoacids. II.: 2-Acylbenzoic Acid Derivatives. Acta Crystallogr A B54:264–276

    Article  CAS  Google Scholar 

  8. Schomaker V, Stevenson DP (1941) Some revisions of the covalent radii and the additivity rule for the lengths of partially ionic single covalent bonds. J Am Chem Soc 63:37–40

    Article  CAS  Google Scholar 

  9. Pascual C, Wegmann D, Graf U, Sheffold R, Sommer PF, Simon W (1964) Aciditat, Infrarot-und Kernresonanz-Spektren substituierter γ-Ketocarbonsauren bzw. ihrer Pseudosauren. Helv Chim Acta 47:21–23

    Google Scholar 

  10. Bowden K, Misic-Vukovic M, Ranson RJ (1999) Ring-chain tautomerism. Part 10. The reaction of oxocarboxylic acids with diazodiphenylmethane. Collect Czeckoslovakian Chem Commun 64:1601–1606

    Article  CAS  Google Scholar 

  11. Sheldrick GM (2008) (SHELXS-86 and SHELXL-97) A short history of SHELX. Acta Crystallogr A A64:112–122

    Article  Google Scholar 

  12. Farrugia LJ (1997) ORTEP-3 for Windows. J Appl Crystallogr 30:565–566

    Article  CAS  Google Scholar 

  13. Spartan’08,. version 1.0. Wavefunction Inc., Irvine, California

  14. Serjeant EP, Dempsey B (1979). Ionisation constants of organic acids in aqueous solution. IUPAC Chemical Data Series No. 23, Pergamon, 1st ed., p. 81

  15. Bowden K, Taylor GR (1971). Ring–chain tautomerism. Part I. 2-Acyl- and 2-aroyl-benzoic acids. J Chem Soc. B, 1390–1394

  16. Fabian WMF, Bowden K (2001) Ab initio and density functional calculations on the ring-chain tautomerism of γ-oxocarboxylic acids. Eur J Org Chem 2001(2):303–309

    Article  Google Scholar 

  17. The Vibrational Spectra and Structure of Mucochloric and (1978) Mucobromic Acids. R. D. Moore and J. E. Katon. Applied Spectroscopy 32:145–151

    Article  Google Scholar 

  18. Wasserman HH, Precopio FM (1952) Studies on the mucohalic acids. I. The structure of mucoxychloric acid. J Am Chem Soc 74:326–328

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Corey Parrish for experimental assistance, EJV acknowledges the National Science Foundation (MRI Grant 0604188) for support of crystallographic equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Valente.

Ethics declarations

Conflicts of Interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supinski, M., Valente, E.J. Mucochloric Pseudoanhydrides. J Chem Crystallogr 46, 263–268 (2016). https://doi.org/10.1007/s10870-016-0655-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0655-x

Keywords

Navigation