Skip to main content
Log in

Syntheses and Crystal Structures of Three Cu(II) Coordination Polymers Based on 1,3,5-Tris(imidazol-1-yl)benzene and Benzene Carboxylate Ligands

  • Brief Communication
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Three coordination polymers, namely, Cu(HL1)(timb) (1), Cu3(L2)3(timb)2(H2O)2 ·2H2O·4CH3CN (2) and Cu(L3)0.5(timb)·H2O (3) (timb = 1,3,5-tris(imidazol-1-yl)benzene, H3L1 = 1,2,4-benzenetricarboxylic acid, H3L2 = 1,3,5-benzenetricarboxylic acid and H4L3 = 1,2,4,5-benzenetetracarboxylic acid), have been synthesized and characterized by elemental analyses, infrared spectra (IR), thermogravimetric analysis (TGA) and single-crystal X-ray diffraction. Single crystal structure analysis shows that complex 1 possesses a three-dimensional (3D) twofold interpenetrating architecture with a very rare (3,5)-connected (3·72)(32·75·83) topology. Complex 2 features an interesting 3D (3,4)-connected framework with an unprecedented (4·82)4(42·82·102)2(84·122) topology, whereas complex 3 exhibits a novel 3D (3,4,5)-connected framework with an unusual (4·63·86)2(42·84)(63)2 topology. The results reveal that the carboxylic building blocks play a significant role in promoting the diversity of the observed structural motifs. In addition, their thermal stabilities have also been investigated.

Graphical Abstract

Three Cu(II) complexes with unique topology have been constructed by three different benzene carboxylates and the timb ligand. The results reveal that the carboxylic building blocks play a significant role in promoting the diversity of the observed structural motifs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Du M, Li CP, Chen M, Ge ZW, Wang X, Wang L, Liu CS (2014) J Am Chem Soc 136:10906–10909

    Article  CAS  Google Scholar 

  2. Long JR, Yaghi OM (2009) Chem Soc Rev 38:1213–1214

    Article  CAS  Google Scholar 

  3. Liu CS, Yang XG, Hu M, Du M, Fang SM (2012) Chem Commun 48:7459–7461

    Article  CAS  Google Scholar 

  4. Chen L, Chen QH, Wu MY, Jiang FL, Hong MC (2015) Acc Chem Res 48:201–210

    Article  CAS  Google Scholar 

  5. Liu K, Shi W, Cheng P (2015) Coord Chem Rev 289–290:74–122

    Article  Google Scholar 

  6. Zhou HC, Kitagawa S (2014) Chem Soc Rev 43:5415–5418

    Article  CAS  Google Scholar 

  7. Du M, Li CP, Liu CS, Fang SM (2013) Coord Chem Rev 257:1282–1305

    Article  CAS  Google Scholar 

  8. Zhou HC, Long JR, Yaghi OM (2012) Chem Rev 112:673–674

    Article  CAS  Google Scholar 

  9. Guo XM, Guo HD, Zou HY, Qi YJ, Chen RZ (2013) CrystEngComm 15:9112–9120

    Article  CAS  Google Scholar 

  10. Zhao FH, Jing S, Che YX, Zheng JM (2012) CrystEngComm 14:4478–4485

    Article  CAS  Google Scholar 

  11. Shen LJ, Gray D, Masel RI, Girolami GS (2012) CrystEngComm 14:5145–5147

    Article  CAS  Google Scholar 

  12. Stock N, Biswas S (2012) Chem Rev 112:933–969

    Article  CAS  Google Scholar 

  13. Guo HD, Guo XM, Zou HY, Qi YJ, Chen RZ, Zhao L, Liu CM (2014) CrystEngComm 16:7459–7468

    Article  CAS  Google Scholar 

  14. Zhou K, Jiang FL, Chen L, Wu MY, Zhang SQ, Ma J, Hong MC (2012) Chem Commun 48:12168–12170

    Article  CAS  Google Scholar 

  15. Hu FL, Wang SL, Wu B, Yu H, Wang F, Lang JP (2014) CrystEngComm 16:6354–6363

    Article  Google Scholar 

  16. Pan M, Su CY (2014) CrystEngComm 16:7847–7859

    Article  CAS  Google Scholar 

  17. Ding JG, Yin C, Zheng LY, Han SS, Li BL, Wu B (2014) RSC Adv 4:24594–24600

    Article  CAS  Google Scholar 

  18. Yao XQ, Pan ZR, Hu JS, Li YZ, Guo ZJ, Zheng HG (2011) Chem Commun 47:10049–10051

    Article  CAS  Google Scholar 

  19. Li SB, Sun WL, Wang K, Ma HY, Pang HJ, Liu H, Zhang JX (2014) Inorg Chem 53:4541–4547

    Article  CAS  Google Scholar 

  20. Tian YQ, Zhao YM, Chen ZX, Zhang GN, Weng LH, Zhao DY (2007) Chem Eur J 13:4146–4154

    Article  CAS  Google Scholar 

  21. Phan A, Doonan CJ, Uribe-Romo FJ, Knobler CB, O’Keeffe M, Yaghi OM (2010) Acc Chem Res 43:58–67

    Article  CAS  Google Scholar 

  22. Mukherjee S, Samanta D, Mukherjee PS (2013) Cryst Growth Des 13:5335–5343

    Article  CAS  Google Scholar 

  23. Xue ZZ, Sheng TL, Wang YL, Hu SM, Wen YH, Wang Y, Li HR, Fu RB, Wu XT (2015) CrystEngComm 17:2004–2012

    Article  CAS  Google Scholar 

  24. Wang H, Yi FY, Dang S, Tiang WG, Sun ZM (2014) Cryst Growth Des 14:147–156

    Article  Google Scholar 

  25. Hua JA, Zhao Y, Liu Q, Zhao D, Chen K, Sun WY (2014) CrystEngComm 16:7536–7546

    Article  CAS  Google Scholar 

  26. Wang L, Yan ZH, Xiao ZY, Guo D, Wang WQ, Yang Y (2013) CrystEngComm 15:5552–5560

    Article  CAS  Google Scholar 

  27. Sun D, Yan ZH, Blatov VA, Wang L, Sun DF (2013) Cryst Growth Des 13:1277–1289

    Article  CAS  Google Scholar 

  28. Hauptvogel IM, Bon V, Grünker R, Baburin IA, Senkovska I, Mueller U, Kaskel S (2012) Dalton Trans 41:4172–4179

    Article  CAS  Google Scholar 

  29. Kim D, Lah MS (2013) CrystEngComm 15:9491–9498

    Article  CAS  Google Scholar 

  30. Cao TT, Peng YQ, Liu T, Wang SN, Dou JM, Li YW, Zhou CH, Li DC, Bai JF (2014) CrystEngComm 16:10658–10673

    Article  CAS  Google Scholar 

  31. Li YW, Li DC, Xu J, Hao HG, Wang SN, Dou JM, Hu TL, Bu XH (2014) Dalton Trans 43:15708–15712

    Article  CAS  Google Scholar 

  32. Jiang HL, Tatsu Y, Lu ZH, Xu Q (2010) J Am Chem Soc 132:5586–5587

    Article  CAS  Google Scholar 

  33. Liu XM, Lin RB, Zhang JP, Chen XM (2012) Inorg Chem 51:5686–5692

    Article  CAS  Google Scholar 

  34. Han LW, Lu J, Lin ZJ, Cao R (2014) CrystEngComm 16:1749–1754

    Article  CAS  Google Scholar 

  35. Kongpatpanich K, Horike S, Sugimoto M, Kitao S, Seto M, Kitagawa S (2014) Chem Commun 50:2292–2294

    Article  CAS  Google Scholar 

  36. Das MC, Guo QS, He YB, Kim J, Zhao CG, Hong KL, Xiang SC, Zhang ZJ, Thomas KM, Krishna R, Chen BL (2012) J Am Chem Soc 134:8703–8710

    Article  CAS  Google Scholar 

  37. Zhao W, Song Y, Okamura TA, Sun WY, Ueyama N (2005) Inorg Chem 44:3330–3336

    Article  CAS  Google Scholar 

  38. Bruker AXS (1998) SAINT Software Reference Manual, Madison

  39. Sheldrick GM (1996) SADABS, Siemens Area Detector Absorption Corrected Software. University of Göttingen, Göttingen

    Google Scholar 

  40. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  41. Blatov VA, Shevchenko AP, Proserpio M (2014) Cryst Growth Des 14:3576–3586

    Article  CAS  Google Scholar 

  42. Zhang LP, Yang J, Ma JF, Jia ZF, Xie YP, Wei GH (2008) CrystEngComm 10:1410–1420

    Article  CAS  Google Scholar 

  43. Lin HY, Mu B, Wang XL, Tian AX (2012) J Organomet Chem 702:36–44

    Article  CAS  Google Scholar 

  44. Wen LL, Zhao JB, Lv KL, Deng KJ, Leng XK, Li DF (2012) Cryst Growth Des 12:1603–1612

    Article  CAS  Google Scholar 

  45. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 21271116, 21171097), the Key Project of Chinese Ministry of Education (No. 210102) and the Qing Lan Project of Jiangsu Provincial Department of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Xiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XF., Liu, GX. Syntheses and Crystal Structures of Three Cu(II) Coordination Polymers Based on 1,3,5-Tris(imidazol-1-yl)benzene and Benzene Carboxylate Ligands. J Chem Crystallogr 46, 252–261 (2016). https://doi.org/10.1007/s10870-016-0652-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0652-0

Keywords

Navigation