Skip to main content

Advertisement

Log in

5-Fluorouracil Co-crystals and Their Potential Anti-cancer Activities Calculated by Molecular Docking Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A series of co-crystals containing 5-fluorouracil as the active pharmaceutical ingredient were prepared via mechanochemical grinding and a normal solution method. Results indicate that both methods produced similar products, as verified by comparison of the X-ray powder diffraction patterns. Structural studies on this series of co-crystals revealed the non-ionic interactions present in the crystal lattice that form 1, 2, and 3-dimensional networks through persistent hydrogen bonds formed by certain functional groups; these may be used as templates to create new solid-state structures. Docking studies using the CDOCKER protocol in Discovery Studio Version 2.5 were used to investigate the potential anti-cancer activities of the novel co-crystals against a colorectal cancer target protein, human thymidylate synthase. The results were compared with a control ligand, dUMP, which is also found in the structure of the deposited protein model, 1HVY. A CDOCKER interaction energy of -34.65 kcal/mol compared to that of dUMP was calculated, indicating that these co-crystals are promising anti-cancer compounds.

Graphical Abstract

Developing a series of 5-fluorouracil co-crystals; synthesis, characterization and their potential anti-cancer from molecular docking. The colorectal cancer target protein used in this study, human thymidylate synthase (PDB: 1HVY, shown as a cartoon), showing the secondary structure. The ligands dUMP (red), co-crystals 1 (blue), 2 (green), 3 (yellow), and 4 (purple) are shown superimposed in the binding pocket.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Delori A, Friščić T, Jones W (2012) CrystEngComm 14:2350–2362

    Article  CAS  Google Scholar 

  2. Dunitz JD (1991) Pure Appl Chem 63:177–185

    Article  CAS  Google Scholar 

  3. Zaworotko MJ (2007) Cryst Growth Des 7:4–9

    Article  CAS  Google Scholar 

  4. Desiraju GR (2013) J Am Chem Soc 135:9952–9967

    Article  CAS  Google Scholar 

  5. Thomas R, Kulkarni GU (2007) Beilstein J Org Chem 4:4–7

    Google Scholar 

  6. Desiraju GR (1995) Angew Chem Int Ed Engl 34:2311–2327

    Article  CAS  Google Scholar 

  7. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  8. Braga D (2003) Chem Commun (Camb) 22:2751–2754

    Article  Google Scholar 

  9. Aakeröy CB, Champness NR, Janiak C (2010) CrystEngComm 12:22–43

    Article  Google Scholar 

  10. Nanjwade VK, Manvi FV, Shamrez AM, Nanjwade BK, Maste MM (2011) J Appl Pharm Sci 1:1–5

    Google Scholar 

  11. Bond AD (2007) CrystEngComm 9:833

    Article  CAS  Google Scholar 

  12. Sekhon BS (2009) Ars Pharmaceutica 50:99–117

    Google Scholar 

  13. Aakeröy CB, Grommet AB, Desper J (2011) Pharmaceutics 3:601–614

    Article  Google Scholar 

  14. Almarsson O, Zaworotko MJ (2004) Chem Commun (Camb) 17:1889–1896

    Article  Google Scholar 

  15. Shan N, Zaworotko MJ (2008) Drug Discov Today 13:440–446

    Article  CAS  Google Scholar 

  16. Blagden N, Berry DJ, Parkin A, Javed H, Ibrahim A, Gavan PT, De Matos LL, Seaton CC (2008) New J Chem 32:1659–1672

    Article  CAS  Google Scholar 

  17. Raghuram M, Alam MS, Prasad M (2014) Khanduri CHAS 6:1–5

    Google Scholar 

  18. Sharma V, Chitranshi N, Agarwal AK (2014) Int J Med Chem. doi:10.1155/2014/202784

    Google Scholar 

  19. Delori A, Eddleston MD, Jones W (2013) CrystEngComm 15:73–77

    Article  CAS  Google Scholar 

  20. Sousa MML, Krokan HE (2007) Slupphaug G 28:276–306

    CAS  Google Scholar 

  21. Kavli B, Otterlei M, Slupphaug G (2006) Krokan HE 6:505–516

    Google Scholar 

  22. Xia B, Liu Y, Li W, Brice AR, Dominy BN, Cao W (2014) J Biol Chem 289:18413–18426

    Article  CAS  Google Scholar 

  23. Krokan HE, Drabløs F, Slupphaug G (2002) Oncogene 21:8935–8948

    Article  CAS  Google Scholar 

  24. Brockman RW, Davis JM, Stutts P (1960) Biochim Biophys Acta 40:22–32

    Article  CAS  Google Scholar 

  25. Grem J (2000) Invest New Drugs 18:299–313

    Article  CAS  Google Scholar 

  26. Zhang N, Yin Y, Xu SJ, Chen WS (2008) Molecules 13:1551–1569

    Article  CAS  Google Scholar 

  27. Longley DB, Harkin DP, Johnston PG (2003) Nat Rev Cancer 3:330–338

    Article  CAS  Google Scholar 

  28. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J (1957) Nature 179:663–666

    Article  CAS  Google Scholar 

  29. Wishkerman S, Bernstein J, Hickey MB (2009) Cryst Growth Des 9:3204–3210

    Article  CAS  Google Scholar 

  30. Li S, Chen J-M, Lu T-B (2014) CrystEngComm 16:6450–6458

    Article  CAS  Google Scholar 

  31. Barnett SA, Hulme AT, Tocher DA (2006) Acta Crystallogr. Sect C 2:412–415

    Google Scholar 

  32. Singh UP, Kashyap S, Singh HJ, Mishra BK, Roy P, Chakraborty A (2012) J Mol Struct 1014:47–56

    Article  CAS  Google Scholar 

  33. Yang J, Li S, Zhao H, Song B, Zhang G, Zhang J, Zhu Y, Han J (2014) J Phys Chem A 118:10927–10933

    Article  CAS  Google Scholar 

  34. Sheldrick GM (2007) Acta Crystallogr. Sect A 64:112–122

    Google Scholar 

  35. Dolomanov OV, Bourhis LJ, Gildea RJ, Puschmann H (2009) J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  36. Spek A (2009) Acta Crystallogr. Sect D 65:148–155

    Article  CAS  Google Scholar 

  37. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  38. B. V PANalytical, X’Pert HighScore Plus, Version, 2009

  39. Phan J, Koli S, Minor W, Dunlap RB, Berger SH, Lebioda L (2001) Biochemistry 40:1897–1902

    Article  CAS  Google Scholar 

  40. Dassault Systèmes BIOVIA (2015) Discovery Studio Modeling Environment, Release 4.5, San Diego, Dassault Systèmes

  41. Momany FA, Rone R (1992) J Comput Chem 13:888–900

    Article  CAS  Google Scholar 

  42. Dai Y, Wang Q, Zhang X, Jia S, Zheng H, Feng D, Yu P (2010) Eur J Med Chem 45:5612–5620

    Article  CAS  Google Scholar 

  43. Akalin E, Akyuz S, Akyuz T (2007) J Mol Struct 834:477–481

    Article  Google Scholar 

  44. Alcolea Palafox M, Tardajos G, Guerrero-Martínez A, Vats JK, Joe H, Rastogi VK (2010) Spectrochim. Acta Part A 75:1261–1269

    Article  CAS  Google Scholar 

  45. Bhogala BR, Captain B, Parthasarathy A, Ramamurthy V (2010) J Am Chem Soc 132:13434–13442

    Article  CAS  Google Scholar 

  46. Janiak C (2000) J Chem Soc Dalton Trans 21:3885–3896

    Article  Google Scholar 

  47. Winter G, Fersht AR, Wilkinson AJ, Zoller M, Smith M (1982) Nature 299:756–758

    Article  CAS  Google Scholar 

  48. Wilkinson AJ, Fersht AR, Blow DM, Winter G (1983) Biochemistry 22:3581–3586

    Article  CAS  Google Scholar 

  49. Wilkinson AJ, Fersht AR, Blow DM, Carter P, Winter G (1984) Nature 307:187–188

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We appreciatively acknowledge Ministry of Higher Education of Malaysia and University of Malaya for the Exploratory Research Grant Scheme, ERGS (ER008-2013A), Fundamental Research Grant Scheme, FRGS (FP005-2015A), and Postgraduate Research Grant, PPP (PG054-2013B) and Computation and Informatics (C + i) Research Cluster/High Performance Scientific Computing Program (UMRG Project No. RP001C-13ICT) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Nadiah Abdul Halim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadzri, N.I., Sabri, N.H., Lee, V.S. et al. 5-Fluorouracil Co-crystals and Their Potential Anti-cancer Activities Calculated by Molecular Docking Studies. J Chem Crystallogr 46, 144–154 (2016). https://doi.org/10.1007/s10870-016-0638-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-016-0638-y

Keywords

Navigation