Journal of Chemical Crystallography

, Volume 45, Issue 8–9, pp 401–409 | Cite as

Synthesis and Crystal Structures of 2-Azido-4-aminocyclohexane-1,3-diols

  • Méabh B. Brennan
  • Stephen G. Davies
  • James A. Lee
  • Amber L. Thompson
  • James E. Thomson
Original Paper

Abstract

2-Azido-4-aminocyclohexane-1,3-diols 12, 14 and 16 were synthesised and their crystal structures were studied by X-ray diffraction. Compound 12 crystallizes in the monoclinic space group P21/n with cell parameters of a = 13.7059(2) Å, b = 10.8861(2) Å, c = 13.8675(3) Å, β = 117.2365(10)°, V = 1839.67(6) Å3 and Z = 4. Compound 14 crystallizes in the orthorhombic space group Pcab with cell parameters of a = 9.9508(1) Å, b = 10.9839(2) Å, c = 24.7035(4) Å, V = 2700.06(7) Å3 and Z = 8. Compound 16 crystallizes in the triclinic space group \(\text{P}\bar{\it{1}}\) with cell parameters of a = 10.9511(3) Å, b = 11.3148(3) Å, c = 15.9545(5) Å, α = 86.3487(11)°, β = 87.4723(11)°, γ = 89.3398(10)°, V = 1970.91(10) Å3 and Z = 4. All three structures were characterised by arrays of hydrogen bonding interactions and these crystallographic studies also revealed their conformations, which gave valuable information into the regioselectivity of epoxide ring-opening during their formation.

Graphical Abstract

Three 2-azido-4-aminocyclohexane-1,3-diols 12, 14 and 16 were synthesised and their crystal structures were studied by X-ray diffraction. All three structures were characterised by arrays of hydrogen bonding interactions and these crystallographic studies also revealed valuable conformational data which was used to rationalise the regioselectivity of epoxide ring-opening during their formation.

Keywords

Amino alcohol Hydrogen bonding Epoxide ring-opening Regioselectivity 

References

  1. 1.
    Davies SG, Ling KB, Roberts PM, Russell AJ, Thomson JE, Woods PA (2010) Tetrahedron 66:6806CrossRefGoogle Scholar
  2. 2.
    Davies SG, Ling KB, Roberts PM, Russell AJ, Thomson JE (2007) Chem Commun 39:4029CrossRefGoogle Scholar
  3. 3.
    Csatayová K, Davies SG, Lee JA, Ling KB, Roberts PM, Russell AJ, Thomson JE (2010) Org Lett 12:3152CrossRefGoogle Scholar
  4. 4.
    Csatayová K, Davies SG, Lee JA, Ling KB, Roberts PM, Russell AJ, Thomson JE (2010) Tetrahedron 66:8420CrossRefGoogle Scholar
  5. 5.
    Christensen KE, Csatayová K, Davies SG, Lee JA, Roberts PM, Thompson AL, Thomson JE (2011) J Chem Crystallogr 41:1007CrossRefGoogle Scholar
  6. 6.
    Aciro C, Claridge TDW, Davies SG, Roberts PM, Russell AJ, Thomson JE (2008) Org Biomol Chem 6:3751CrossRefGoogle Scholar
  7. 7.
    Aciro C, Davies SG, Roberts PM, Russell AJ, Smith AD, Thomson JE (2008) Org Biomol Chem 6:3762CrossRefGoogle Scholar
  8. 8.
    Aciro C, Davies SG, Kurosawa W, Roberts PM, Russell AJ, Thomson JE (2009) Org Lett 11:1333CrossRefGoogle Scholar
  9. 9.
    Bond CW, Cresswell AJ, Davies SG, Fletcher AM, Kurosawa W, Lee JA, Roberts PM, Russell AJ, Smith AD, Thomson JE (2009) J Org Chem 74:6735CrossRefGoogle Scholar
  10. 10.
    Bagal SK, Davies SG, Lee JA, Roberts PM, Russell AJ, Scott PM, Thomson JE (2010) Org Lett 12:136CrossRefGoogle Scholar
  11. 11.
    Davies SG, Fletcher AM, Kurosawa W, Lee JA, Poce G, Roberts PM, Thomson JE, Williamson DM (2010) J Org Chem 75:7745CrossRefGoogle Scholar
  12. 12.
    Bagal SK, Davies SG, Lee JA, Roberts PM, Scott PM, Thomson JE (2010) J Org Chem 75:8133CrossRefGoogle Scholar
  13. 13.
    Bagal SK, Davies SG, Fletcher AM, Lee JA, Roberts PM, Scott PM, Thomson JE (2011) Tetrahedron Lett 52:2216CrossRefGoogle Scholar
  14. 14.
    Brennan MB, Claridge TDW, Compton RG, Davies SG, Fletcher AM, Henstridge MC, Hewings DS, Kurosawa W, Lee JA, Roberts PM, Schoonen AK, Thomson JE (2012) J Org Chem 77:7241CrossRefGoogle Scholar
  15. 15.
    Davies SG, Hewings DS, Kurosawa W, Lee JA, Roberts PM, Thompson AL, Thomson JE (2014) J Chem Crystallogr 44:30CrossRefGoogle Scholar
  16. 16.
    Cresswell AJ, Davies SG, Hewings DS, Kurosawa W, Lee JA, Morris MJ, Roberts PM, Thompson AL, Thomson JE (2013) J Chem Crystallogr 43:646CrossRefGoogle Scholar
  17. 17.
    Brennan MB, Davies SG, Fletcher AM, Lee JA, Roberts PM, Russell AJ, Thomson JE (2015) Aust J Chem 68:610CrossRefGoogle Scholar
  18. 18.
    Davies SG, Fletcher AM, Thomson JE (2014) Org Biomol Chem 12:4544CrossRefGoogle Scholar
  19. 19.
    Cresswell AJ, Davies SG, Lee JA, Morris MJ, Roberts PM, Thomson JE (2012) J Org Chem 77:7262CrossRefGoogle Scholar
  20. 20.
    Brennan MB, Csatayová K, Davies SG, Fletcher AM, Green WD, Lee JA, Roberts PM, Russell AJ, Thomson JE (2015) J Org Chem 80:6609CrossRefGoogle Scholar
  21. 21.
    Cosier J, Glazer AM (1986) J Appl Crystallogr 19:105CrossRefGoogle Scholar
  22. 22.
    Otwinowski Z, Minor W (1997) Methods in enzymology. Academic Press, New York, pp 307–326Google Scholar
  23. 23.
    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435Google Scholar
  24. 24.
    Betteridge PW, Carruthers JR, Cooper RI, Prout CK, Watkin DJ (2003) J Appl Crystallogr 36:1487CrossRefGoogle Scholar
  25. 25.
    Parois P, Cooper RI, Thompson AL (2015) Chem Cent J 9:30CrossRefGoogle Scholar
  26. 26.
    Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Cryst 43:1100CrossRefGoogle Scholar
  27. 27.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555CrossRefGoogle Scholar
  28. 28.
    Fürst A, Plattner PA (1951) In Proceedings of the 12th international congress of pure and applied chemistry, New York, p 409Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Méabh B. Brennan
    • 1
  • Stephen G. Davies
    • 1
  • James A. Lee
    • 1
  • Amber L. Thompson
    • 1
  • James E. Thomson
    • 1
  1. 1.Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations