Skip to main content
Log in

Crystal and Molecular Structures of Quinolin-8-ol and its Salts with Acetylenedicarboxylic Acid, and Butane-1,2,3,4-tetracarboxylic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The crystalline compounds quinolin-8-ol (1) and its two salts 2, and 3 have been prepared and structurally characterized. Compound 1 crystallizes in the triclinic, space group P-1, with a = 6.5775(5) Å, b = 7.8285(6) Å, c = 14.4617(13) Å, α = 96.099(2), β = 92.4700(10)°, γ = 106.171(3), V = 709.09(10) Å3, Z = 4. Compound 1 is a new polymorph of quinolin-8-ol, and displays as dimer. Compound 2 crystallizes in the monoclinic, space group P2(1)/n, with a = 7.4815(11) Å, b = 18.844(3) Å, c = 8.0396(8) Å, β = 94.069(10), V = 1130.5(3) Å3, Z = 4. Compound 3 crystallizes in the triclinic, space group P-1, with a = 7.0968(6) Å, b = 8.6854(7) Å, c = 11.0494(11) Å, α = 105.169(2), β = 90.3700(10)°, γ = 106.031(2), V = 629.50(10) Å3, Z = 1. In the compound 3, the middle two COOH groups were ionized. In the compounds 2 and 3, as predicted on the basis of pKa differences, proton transfer from the COOH group to the hetero-nitrogen of the quinolin-8-ol molecule occurs, resulting in the formation of the hydrogen or dihydrogen salts. In neither of the compounds (2 and 3) the primary cyclic hydrogen-bonded R 22 (8) A–B heterodimer was formed, involving the second oxygen of the anion and the 8-hydroxy substituent of quinolin-8-ol. Instead, this molecule acts in a bridging mode to link the associated molecular units into chain polymers via combination of hydrogen bonds and other nonbonding interactions. The role of these non-covalent interactions in the crystal packing is analyzed. Under these weak interactions, compounds 2 and 3 displayed 3D framework structures.

Graphical Abstract

The crystal structures of quinolin-8-ol and its two salts from acetylenedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid display extensive classical hydrogen bonding as well as other non-covalent CH–O, CH2–O, O–Cπ, CH–Cπ, and π···π interactions, giving 0/3D framework structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tiekink ERT, Vittal JJ, Zaworotko MJ (2010) In organic crystal engineering: frontiers in crystal engineering. Wiley, Chichester

    Book  Google Scholar 

  2. Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS (2004) Eur J Inorg Chem 23:4572

    Article  Google Scholar 

  3. Janiak C (2000) J Chem Soc Dalton Trans 21:3885

    Article  Google Scholar 

  4. Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049

    Article  CAS  Google Scholar 

  5. Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Cryst B40:159

    Article  CAS  Google Scholar 

  6. Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505

    Article  CAS  Google Scholar 

  7. Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808

    Article  CAS  Google Scholar 

  8. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  9. Braga D, Grepioni F, Desiraju GR (1998) Chem Rev 98:1375

    Article  CAS  Google Scholar 

  10. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  11. Zaworotko MJ (2007) Cryst Growth Des 7:4

    Article  CAS  Google Scholar 

  12. Maamen M, Gordon DM (1995) Acc Chem Res 28:37 (and references therein)

    Article  Google Scholar 

  13. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106

    Article  CAS  Google Scholar 

  14. Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247

    Article  CAS  Google Scholar 

  15. Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  16. Leiserowitz L (1976) Acta Crystallogr B 32:775

    Article  Google Scholar 

  17. Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654

    Article  CAS  Google Scholar 

  18. Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936

    Article  CAS  Google Scholar 

  19. Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431

    CAS  Google Scholar 

  20. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  21. Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378

    Article  CAS  Google Scholar 

  22. Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521

    Article  CAS  Google Scholar 

  23. Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547

    Article  CAS  Google Scholar 

  24. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    Article  CAS  Google Scholar 

  25. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    Article  CAS  Google Scholar 

  26. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    Article  CAS  Google Scholar 

  27. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    Article  CAS  Google Scholar 

  28. Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978

    Article  CAS  Google Scholar 

  29. Smith G, Wermuth UD, White JM (2001) Aust J Chem 54:171

    Article  CAS  Google Scholar 

  30. Smith G, Wermuth UD, White JM (2003) CrystEngComm 5:58

    Article  CAS  Google Scholar 

  31. Smith G, White JM (2001) Aust J Chem 54:97

    Article  CAS  Google Scholar 

  32. Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87

    Article  CAS  Google Scholar 

  33. Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Pol J Chem 83:1937

    CAS  Google Scholar 

  34. Bruker (2004) SMART and SAINT. Bruker AXS, Madison

    Google Scholar 

  35. Sheldrick GM (2000) SHELXTL, structure determination software suite, version 6.14. Bruker AXS, Madison

    Google Scholar 

  36. Wendlandt WW, Horton GR (1963) J Inorg Nucl Chem 25:247

    Article  Google Scholar 

  37. Roychowdhury P, Das BN, Basak BS (1978) Acta Crystallogr Sect B 34:1047

    Article  Google Scholar 

  38. Simonsen SH, Bechtel DW (1980) Am Cryst Assoc Ser 27:23

    Google Scholar 

  39. Bannerjee T, Saha NN (1986) Acta Crystallogr Sect C 42:1408

    Article  Google Scholar 

  40. Timofeeva TV, Kuhn GH, Nesterov VV, Nesterov VN, Frazier DO, Penn BG, Antipin MY (2003) Cryst Growth Des 3:383

    Article  CAS  Google Scholar 

  41. Banerjee T, Saha NN (1986) Acta Cryst C42:1408

    CAS  Google Scholar 

  42. Castañeda R, Antal SA, Draguta S, Timofeeva TV, Khrustalev VN (2014) Acta Cryst E70:o924

    Google Scholar 

  43. Smith G, Wermuth UD, Healy PC, White JM (2006) Acta Cryst E62:o5089

    Google Scholar 

  44. Eichstaedt K, Olszewska T, Gdaniec M (2013) Acta Cryst E69:o144

    Google Scholar 

  45. Jin SW, Wang DQ, Liang SS, Chen SJ (2012) J Chem Crystallogr 42:759

    Article  CAS  Google Scholar 

  46. Najafpour MM, Holynska M, Lis T (2008) Acta Cryst E64:o985

    Google Scholar 

  47. Barnes HA, Barnes JC (1996) Acta Cryst C52:731

    CAS  Google Scholar 

  48. McKee V, Najafpour MM (2007) Acta Cryst E63:o741

    Google Scholar 

  49. Etter MC, MacDonald JC, Bernstein J (1990) Acta Cryst B46:256

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, the Education Office Foundation of Zhejiang Province under Grant No. Y201017321, the National Training Programs of Innovation and Entrepreneurship of China for Undergraduates under Grant No. 201410341022, and the Zhejiang A & F University Science Foundation under Grant No. 2009FK63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, K., Jin, S., Wang, D. et al. Crystal and Molecular Structures of Quinolin-8-ol and its Salts with Acetylenedicarboxylic Acid, and Butane-1,2,3,4-tetracarboxylic Acid. J Chem Crystallogr 45, 290–299 (2015). https://doi.org/10.1007/s10870-015-0590-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0590-2

Keywords

Navigation