Crystallization of the \({\text{Mn}}^{{\text{II}}}[12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]^{2+}\) Structure with 1,2,4-Triazolate from Methanol

Abstract

The metallacrown (MC) dimer complex {MnII(OAc)(1,2,4-trz)\([12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]\)(CH3OH)4.46(H2O)0.54}2·1.53CH3OH·6.47H2O, 1, where OAc is acetate, 1,2,4-trz is triazolate, and shi3− is salicylhydroximate, has been synthesized and characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/c with a = 10.9139(17) Å, b = 28.319(4) Å, c = 15.675(2) Å, α = 90.00°, β 93.362(3)°, γ = 90.00°, V = 4836.4(13) Å3, and Z = 2. The compound is an example of a \(12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4\) complex crystallized from methanol in the presence of a basic nitrogen-containing aromatic heterocycle. The dimer formation is a result of the two 1,2,4-triazolate anions being able to form N1, N2, N4-bridges between ring and central cavity manganese ions thus linking two neighboring MCs. An individual MC unit of 1 is nearly planar as evident from the average angle between the axial oxygen or nitrogen atoms, the ring MnIII ion, and the calculated centroid of the oxime oxygen atoms being 90.12° about the MC ring.

Graphical Abstract

This manuscript provides a structural description of a manganese-based MC dimer with the composition {MnII(OAc)(1,2,4-trz)\([12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]\)(CH3OH)4.46(H2O)0.54}2 ·1.53CH3OH·6.47H2O, where two 1,2,4-triazolate (trz) anions bind in a N1,N2,N4 fashion and form bridges between two neighboring MCs

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Aromí G, Barrios LA, Roubeau O, Gamez P (2011) Coord Chem Rev 255:485–546

    Article  Google Scholar 

  2. 2.

    Liu K, Shi W, Cheng P (2011) Dalton Trans 40:8475–8490

    Article  CAS  Google Scholar 

  3. 3.

    Alvarez S (2003) J Am Chem Soc 125:6795–6802

    Article  CAS  Google Scholar 

  4. 4.

    Yi L, Ding B, Zhao B, Cheng P, Liao D-Z, Yan S-P, Jiang Z-H (2004) Inorg Chem 43:33–43

    Article  CAS  Google Scholar 

  5. 5.

    Senchyk GA, Lysenko AB, Boldog I, Rusanov EB, Chernega AN, Krautscheid H, Domasevitch KV (2012) Dalton Trans 41:8675–8689

    Article  CAS  Google Scholar 

  6. 6.

    Scott HS, Nafady A, Cashion JD, Bond AM, Moubaraki B, Murray KS, Neville SM (2013) Dalton Trans 42:10326–10336

    Article  CAS  Google Scholar 

  7. 7.

    Bräunlich I, Sánchez-Ferrer A, Bauer M, Schepper R, Knüsel P, Dshemuchadse J, Mezzenga R, Caseri W (2014) Inorg Chem 53:3546–3557

    Article  Google Scholar 

  8. 8.

    Kulmaczewski R, Olguín J, Kitchen JA, Feltham HLC, Jameson GNL, Tallon JL, Brooker S (2014) J Am Chem Soc 136:878–881

    Article  CAS  Google Scholar 

  9. 9.

    Zhang Z-H, Zhang Q-Q, Feng S, Hu Z-J, Chen S-C, Chen Q, He M-Y (2014) Dalton Trans 43:646–655

    Article  CAS  Google Scholar 

  10. 10.

    Wen J, Yang X-G, Guo W, Liu C-S, Du M (2013) Cryst Eng Commun 15:10171–10174

    Article  CAS  Google Scholar 

  11. 11.

    Arion VB, Reisner E, Fremuth M, Jakupec MA, Keppler BK, Kukushkin VY, Pombeiro AJL (2003) Inorg Chem 42:6024–6031

    Article  CAS  Google Scholar 

  12. 12.

    Ouellette W, Galán-Mascarós JR, Dunbar KR, Zubieta J (2006) Inorg Chem 45:1909–1911

    Article  CAS  Google Scholar 

  13. 13.

    Cheng J-K, Zhang J, Yin P-X, Lin Q-P, Li Z-J, Yao Y-G (2009) Inorg Chem 48:9992–9994

    Article  CAS  Google Scholar 

  14. 14.

    Herchel R, Váhovská L, Potočňák I, Trávníček Z (2014) Inorg Chem 53:5896–5898

    Article  CAS  Google Scholar 

  15. 15.

    Kaase D, Gotzmann C, Rein S, Lan Y, Kacprzak S, Klingele J (2014) Inorg Chem 53:5546–5555

    Article  CAS  Google Scholar 

  16. 16.

    Ferrer S, Haasnoot JG, Reedijk J, Müller E, Cingi MB, Lanfranchi M, Lanfredi AMM, Ribas J (2000) Inorg Chem 39:1859–1867

    Article  CAS  Google Scholar 

  17. 17.

    Dias HVR, Singh S, Campana CF (2008) Inorg Chem 47:3943–3945

    Article  CAS  Google Scholar 

  18. 18.

    Ferrer S, Lloret F, Pardo E, Clemente-Juan JM, Liu-González M, García-Granda S (2012) Inorg Chem 51:985–1001

    Article  CAS  Google Scholar 

  19. 19.

    Ding B, Yi L, Cheng P, Liao D-Z, Yan S-P (2006) Inorg Chem 45:5799–5803

    Article  CAS  Google Scholar 

  20. 20.

    Ferrer S, Aznar E, Lloret F, Castiñeiras A, Liu-González M, Borrás J (2007) Inorg Chem 46:372–374

    Article  CAS  Google Scholar 

  21. 21.

    Ruan C-Z, Wen R, Liang M-X, Kong X-J, Ren Y-P, Long L-S, Huang R-B, Zheng L-S (2012) Inorg Chem 51:7587–7591

    Article  CAS  Google Scholar 

  22. 22.

    Mezei G, Zaleski CM, Pecoraro VL (2007) Chem Rev 107:4933–5003

    Article  CAS  Google Scholar 

  23. 23.

    Lah MS, Pecoraro VL (1989) J Am Chem Soc 111:7258–7259

    Article  CAS  Google Scholar 

  24. 24.

    Kessissoglou DP, Kampf J, Pecoraro VL (1995) Polyhedron 13:1379–1391

    Article  Google Scholar 

  25. 25.

    Emerich B, Smith M, Zeller M, Zaleski CM (2010) J Chem Crystallogr 40:769–777

    Article  CAS  Google Scholar 

  26. 26.

    Tigyer BR, Zeller M, Zaleski CM (2011) Acta Cryst E67:m1041–m1042

    Google Scholar 

  27. 27.

    Tigyer BR, Zeller M, Zaleski CM (2012) Acta Cryst E68:m1521–m1522

    Google Scholar 

  28. 28.

    Tigyer BR, Zeller M, Zaleski CM (2013) Acta Cryst E68:m393–m394

    Google Scholar 

  29. 29.

    Lutter JC, Kampf JW, Zeller M, Zaleski CM (2013) Acta Cryst E68:m483–m484

    Google Scholar 

  30. 30.

    Bruker I (2007) Apex2. Bruker AXS Inc, Madison

    Google Scholar 

  31. 31.

    Bruker I (2001) SADABS. Bruker AXS Inc, Madison

    Google Scholar 

  32. 32.

    Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  33. 33.

    Sheldrick GM (2013) SHELXL2013. University of Göttingen, Germany

    Google Scholar 

  34. 34.

    Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281–1284

    Article  Google Scholar 

  35. 35.

    Liu W, Thorp HH (1993) Inorg Chem 32:4102–42105

    Article  CAS  Google Scholar 

  36. 36.

    Stiefel EI, Brown GF (1972) Inorg Chem 11:434–436

    Article  CAS  Google Scholar 

  37. 37.

    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453–457

    Article  CAS  Google Scholar 

  38. 38.

    Azar MR, Boron TT, Lutter JC, Daly CI, Zegalia KA, Nimthong R, Ferrence GM, Zeller M, Kampf JW, Pecoraro VL, Zaleski CM (2014) Inorg Chem 53:1729–1742

    Article  CAS  Google Scholar 

  39. 39.

    Dendrinou-Samara C, Papadopoulos AN, Malamatari DA, Tarushi A, Raptopoulou CP, Terzis A, Samara E, Kessissoglou DP (2005) J Inorg Biochem 99:864–875

    Article  CAS  Google Scholar 

  40. 40.

    Koumousi ES, Mukherjee S, Beavers C, Teat SJ, Christou G, Stamatatos TC (2011) Chem Commun 47:11128–11130

    Article  CAS  Google Scholar 

  41. 41.

    Lah MS, Pecoraro VL (1991) Inorg Chem 30:878–880

    Article  CAS  Google Scholar 

  42. 42.

    Gibney BR, Wang H, Kampf JW, Pecoraro VL (1996) Inorg Chem 35:6184–6193

    Article  CAS  Google Scholar 

  43. 43.

    Kessissoglou DP, Bodwin JJ, Kampf J, Dendrinou-Samara C, Pecoraro VL (2002) Inorg Chim Acta 331:73–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by The Shippensburg University Foundation UGR2012/13-06 to JCL and CMZ, and the diffractometer was funded by National Science Foundation Grant 0087210, by Ohio Board of Regents Grant CAP-491, and by YSU.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Curtis M. Zaleski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zaleski, C.M., Lutter, J.C. & Zeller, M. Crystallization of the \({\text{Mn}}^{{\text{II}}}[12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]^{2+}\) Structure with 1,2,4-Triazolate from Methanol. J Chem Crystallogr 45, 142–150 (2015). https://doi.org/10.1007/s10870-015-0576-0

Download citation

Keywords

  • Metallacrown
  • Manganese
  • Coordination complex
  • Triazole