Journal of Chemical Crystallography

, Volume 45, Issue 3, pp 142–150 | Cite as

Crystallization of the \({\text{Mn}}^{{\text{II}}}[12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]^{2+}\) Structure with 1,2,4-Triazolate from Methanol

  • Curtis M. ZaleskiEmail author
  • Jacob C. Lutter
  • Matthias Zeller
Original Paper


The metallacrown (MC) dimer complex {MnII(OAc)(1,2,4-trz)\([12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]\)(CH3OH)4.46(H2O)0.54}2·1.53CH3OH·6.47H2O, 1, where OAc is acetate, 1,2,4-trz is triazolate, and shi3− is salicylhydroximate, has been synthesized and characterized by single-crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P21/c with a = 10.9139(17) Å, b = 28.319(4) Å, c = 15.675(2) Å, α = 90.00°, β 93.362(3)°, γ = 90.00°, V = 4836.4(13) Å3, and Z = 2. The compound is an example of a \(12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4\) complex crystallized from methanol in the presence of a basic nitrogen-containing aromatic heterocycle. The dimer formation is a result of the two 1,2,4-triazolate anions being able to form N1, N2, N4-bridges between ring and central cavity manganese ions thus linking two neighboring MCs. An individual MC unit of 1 is nearly planar as evident from the average angle between the axial oxygen or nitrogen atoms, the ring MnIII ion, and the calculated centroid of the oxime oxygen atoms being 90.12° about the MC ring.

Graphical Abstract

This manuscript provides a structural description of a manganese-based MC dimer with the composition {MnII(OAc)(1,2,4-trz)\([12{\text{-MC}}_{{\text{Mn}}^{{\text{III}}}{\text{(N)shi}}}{\text{-}}4]\)(CH3OH)4.46(H2O)0.54}2 ·1.53CH3OH·6.47H2O, where two 1,2,4-triazolate (trz) anions bind in a N1,N2,N4 fashion and form bridges between two neighboring MCs


Metallacrown Manganese Coordination complex Triazole 



This work was funded by The Shippensburg University Foundation UGR2012/13-06 to JCL and CMZ, and the diffractometer was funded by National Science Foundation Grant 0087210, by Ohio Board of Regents Grant CAP-491, and by YSU.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aromí G, Barrios LA, Roubeau O, Gamez P (2011) Coord Chem Rev 255:485–546CrossRefGoogle Scholar
  2. 2.
    Liu K, Shi W, Cheng P (2011) Dalton Trans 40:8475–8490CrossRefGoogle Scholar
  3. 3.
    Alvarez S (2003) J Am Chem Soc 125:6795–6802CrossRefGoogle Scholar
  4. 4.
    Yi L, Ding B, Zhao B, Cheng P, Liao D-Z, Yan S-P, Jiang Z-H (2004) Inorg Chem 43:33–43CrossRefGoogle Scholar
  5. 5.
    Senchyk GA, Lysenko AB, Boldog I, Rusanov EB, Chernega AN, Krautscheid H, Domasevitch KV (2012) Dalton Trans 41:8675–8689CrossRefGoogle Scholar
  6. 6.
    Scott HS, Nafady A, Cashion JD, Bond AM, Moubaraki B, Murray KS, Neville SM (2013) Dalton Trans 42:10326–10336CrossRefGoogle Scholar
  7. 7.
    Bräunlich I, Sánchez-Ferrer A, Bauer M, Schepper R, Knüsel P, Dshemuchadse J, Mezzenga R, Caseri W (2014) Inorg Chem 53:3546–3557CrossRefGoogle Scholar
  8. 8.
    Kulmaczewski R, Olguín J, Kitchen JA, Feltham HLC, Jameson GNL, Tallon JL, Brooker S (2014) J Am Chem Soc 136:878–881CrossRefGoogle Scholar
  9. 9.
    Zhang Z-H, Zhang Q-Q, Feng S, Hu Z-J, Chen S-C, Chen Q, He M-Y (2014) Dalton Trans 43:646–655CrossRefGoogle Scholar
  10. 10.
    Wen J, Yang X-G, Guo W, Liu C-S, Du M (2013) Cryst Eng Commun 15:10171–10174CrossRefGoogle Scholar
  11. 11.
    Arion VB, Reisner E, Fremuth M, Jakupec MA, Keppler BK, Kukushkin VY, Pombeiro AJL (2003) Inorg Chem 42:6024–6031CrossRefGoogle Scholar
  12. 12.
    Ouellette W, Galán-Mascarós JR, Dunbar KR, Zubieta J (2006) Inorg Chem 45:1909–1911CrossRefGoogle Scholar
  13. 13.
    Cheng J-K, Zhang J, Yin P-X, Lin Q-P, Li Z-J, Yao Y-G (2009) Inorg Chem 48:9992–9994CrossRefGoogle Scholar
  14. 14.
    Herchel R, Váhovská L, Potočňák I, Trávníček Z (2014) Inorg Chem 53:5896–5898CrossRefGoogle Scholar
  15. 15.
    Kaase D, Gotzmann C, Rein S, Lan Y, Kacprzak S, Klingele J (2014) Inorg Chem 53:5546–5555CrossRefGoogle Scholar
  16. 16.
    Ferrer S, Haasnoot JG, Reedijk J, Müller E, Cingi MB, Lanfranchi M, Lanfredi AMM, Ribas J (2000) Inorg Chem 39:1859–1867CrossRefGoogle Scholar
  17. 17.
    Dias HVR, Singh S, Campana CF (2008) Inorg Chem 47:3943–3945CrossRefGoogle Scholar
  18. 18.
    Ferrer S, Lloret F, Pardo E, Clemente-Juan JM, Liu-González M, García-Granda S (2012) Inorg Chem 51:985–1001CrossRefGoogle Scholar
  19. 19.
    Ding B, Yi L, Cheng P, Liao D-Z, Yan S-P (2006) Inorg Chem 45:5799–5803CrossRefGoogle Scholar
  20. 20.
    Ferrer S, Aznar E, Lloret F, Castiñeiras A, Liu-González M, Borrás J (2007) Inorg Chem 46:372–374CrossRefGoogle Scholar
  21. 21.
    Ruan C-Z, Wen R, Liang M-X, Kong X-J, Ren Y-P, Long L-S, Huang R-B, Zheng L-S (2012) Inorg Chem 51:7587–7591CrossRefGoogle Scholar
  22. 22.
    Mezei G, Zaleski CM, Pecoraro VL (2007) Chem Rev 107:4933–5003CrossRefGoogle Scholar
  23. 23.
    Lah MS, Pecoraro VL (1989) J Am Chem Soc 111:7258–7259CrossRefGoogle Scholar
  24. 24.
    Kessissoglou DP, Kampf J, Pecoraro VL (1995) Polyhedron 13:1379–1391CrossRefGoogle Scholar
  25. 25.
    Emerich B, Smith M, Zeller M, Zaleski CM (2010) J Chem Crystallogr 40:769–777CrossRefGoogle Scholar
  26. 26.
    Tigyer BR, Zeller M, Zaleski CM (2011) Acta Cryst E67:m1041–m1042Google Scholar
  27. 27.
    Tigyer BR, Zeller M, Zaleski CM (2012) Acta Cryst E68:m1521–m1522Google Scholar
  28. 28.
    Tigyer BR, Zeller M, Zaleski CM (2013) Acta Cryst E68:m393–m394Google Scholar
  29. 29.
    Lutter JC, Kampf JW, Zeller M, Zaleski CM (2013) Acta Cryst E68:m483–m484Google Scholar
  30. 30.
    Bruker I (2007) Apex2. Bruker AXS Inc, MadisonGoogle Scholar
  31. 31.
    Bruker I (2001) SADABS. Bruker AXS Inc, MadisonGoogle Scholar
  32. 32.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  33. 33.
    Sheldrick GM (2013) SHELXL2013. University of Göttingen, GermanyGoogle Scholar
  34. 34.
    Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281–1284CrossRefGoogle Scholar
  35. 35.
    Liu W, Thorp HH (1993) Inorg Chem 32:4102–42105CrossRefGoogle Scholar
  36. 36.
    Stiefel EI, Brown GF (1972) Inorg Chem 11:434–436CrossRefGoogle Scholar
  37. 37.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453–457CrossRefGoogle Scholar
  38. 38.
    Azar MR, Boron TT, Lutter JC, Daly CI, Zegalia KA, Nimthong R, Ferrence GM, Zeller M, Kampf JW, Pecoraro VL, Zaleski CM (2014) Inorg Chem 53:1729–1742CrossRefGoogle Scholar
  39. 39.
    Dendrinou-Samara C, Papadopoulos AN, Malamatari DA, Tarushi A, Raptopoulou CP, Terzis A, Samara E, Kessissoglou DP (2005) J Inorg Biochem 99:864–875CrossRefGoogle Scholar
  40. 40.
    Koumousi ES, Mukherjee S, Beavers C, Teat SJ, Christou G, Stamatatos TC (2011) Chem Commun 47:11128–11130CrossRefGoogle Scholar
  41. 41.
    Lah MS, Pecoraro VL (1991) Inorg Chem 30:878–880CrossRefGoogle Scholar
  42. 42.
    Gibney BR, Wang H, Kampf JW, Pecoraro VL (1996) Inorg Chem 35:6184–6193CrossRefGoogle Scholar
  43. 43.
    Kessissoglou DP, Bodwin JJ, Kampf J, Dendrinou-Samara C, Pecoraro VL (2002) Inorg Chim Acta 331:73–80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Curtis M. Zaleski
    • 1
    Email author
  • Jacob C. Lutter
    • 1
  • Matthias Zeller
    • 2
  1. 1.Department of ChemistryShippensburg UniversityShippensburgUSA
  2. 2.Department of Chemistry, One University PlazaYoungstown State UniversityYoungstownUSA

Personalised recommendations