Skip to main content
Log in

One-Dimensional Coordination Polymers of 12-Metallacrown-4 Complexes: {Na2(L)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4]} n , where L is Either O2CCH2CH3 or O2CCH2CH2CH3

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The metallacrown one-dimensional coordination polymers {Na2(O2CCH2CH3)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4](DMF)4(H2O)2}, 1, and {Na2(O2CCH2CH2CH3)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4](DMF)4(H2O)2}, 2, where shi3− is salicylhydroximate and DMF is N,N-dimethylformamide, have been synthesized and characterized by single-crystal X-ray diffraction. Both compounds crystallize in the triclinic space group \(P\overline{1}\)with a = 8.0212(5) Å, b = 13.2214(8) Å, c = 13.3724(8) Å, α = 102.459(2)°, β = 97.185(2)°, γ = 93.545(2)°, V = 1368.11(14) Å3, and Z = 2 for 1 and with a = 8.0141(8) Å, b = 13.3871(13) Å, c = 13.5008(14) Å, α = 99.311(4)°, β = 96.308(4)°, γ = 92.249(3)°, V = 1418.3(2) Å3, and Z = 2 for 2. The one-dimensional chains are generated by neighboring metallacrown molecules being linked by a total of four propionate, 1, or butyrate, 2, anions (two per metallacrown face) through the ring MnIII ions. Under certain synthetic conditions, the discrete complex Na2(O2CCH2CH2CH3)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4](DMF)6·DMF·HO2CCH2CH2CH3, 3, may be produced instead of the coordination polymer. Characterization of 3 by single-crystal X-ray diffraction yields the triclinic space group \(P\overline{1}\) with a = 10.703(2) Å, b = 12.036(2) Å, c = 14.810(3) Å, α = 77.915(3)°, β = 76.417(3)°, γ = 80.043(3)°, V = 1798.0(6) Å3, and Z = 1. The individual 12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4 frameworks of 1 and 2 are distorted to a greater extent with a higher degree of a ruffled structure when compared to 3. For 1 and 2, the benzene rings of the shi3− ligands are at a greater distance from the mean plane of the ring MnIII ions (MnP). When measured from the carbon para to the phenolate oxygen atom of the shi3− to the MnMP, the distances in 1 and 2 are greater than that in 3: 2.0760(22), 2.0025(59), and 1.2370(34) Å, respectively.

Graphical Abstract

This manuscript provides structural descriptions of two one-dimensional coordination polymers formed by manganese-based metallacrown molecules and bridging carboxylate anions. The four carboxylate anions, propionate or butyrate, link ring MnIII ions of adjacent [12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4] building blocks to produce a one-dimensional chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Metallacrown nomenclature typically adheres to the following scheme: MX[Ring Size-MCM′Z(L)-Number of Ring Oxygen Atoms]Y, where M is the bound central metal ion and its oxidation state, X is the bound anions, M′ is the ring metal ion and its oxidation state, Z is the third ring heteroatom which is usually N, L is the organic ligand used in the MC, and Y is the bound solvent molecules. The presented nomenclature scheme is a simplified version; a more detailed naming scheme may be found in a previous review article [50].

References

  1. Pecoraro VL (1989) Inorg Chim Acta 155:171–173

    Article  CAS  Google Scholar 

  2. Mezei G, Zaleski CM, Pecoraro VL (2007) Chem Rev 107:4933–5003

    Article  CAS  Google Scholar 

  3. Pecoraro VL, Bodwin JJ, Cutland AD (2000) J Solid State Chem 152:68–77

    Article  CAS  Google Scholar 

  4. Janiak C (2003) Dalton Trans 2781–2804

  5. Horike S, Umeyama D, Kitagawa S (2013) Accounts Chem Res 46:2376–2384

    Article  CAS  Google Scholar 

  6. Jeon I-R, Clérac R (2012) Dalton Trans 41:9569–9586

    Article  CAS  Google Scholar 

  7. Mukherjee S, Mukherjee PS (2013) Accounts Chem Res 46:2556–2566

    Article  CAS  Google Scholar 

  8. Pardo E, Ruiz-García R, Cano J, Ottenwaelder X, Lescouëzec R, Journaux Y, Lloret F, Julve M (2008) Dalton Trans 2780–2805

  9. Luzon J, Sessoli R (2012) Dalton Trans 41:13556–13567

    Article  CAS  Google Scholar 

  10. Woodruff DN, Winpenny REP, Layfield RA (2013) Chem Rev 113:5110–5148

    Article  CAS  Google Scholar 

  11. Liu X and Li Y (2009) Dalton Trans 6447–6457

  12. Wang C, Zhang T, Lin W (2012) Chem Rev 112:1084–1104

    Article  CAS  Google Scholar 

  13. Reddy MLP, Sivakumar S (2013) Dalton Trans 42:2663–2678

    Article  CAS  Google Scholar 

  14. Rach SF, Kühn FE (2009) Chem Rev 109:2061–2080

    Article  CAS  Google Scholar 

  15. Leong WL, Vittal JJ (2011) Chem Rev 111:688–764

    Article  CAS  Google Scholar 

  16. Cutland-Van Noord AD, Kampf JW, Pecoraro VL (2002) Angew Chem Int Ed 41:4668–4670

    Article  Google Scholar 

  17. Kurzak B, Farkas E, Glowiak T, Kozlowski H (1991) J Chem Soc Dalton Trans 163–167

  18. Gumienna-Kontecka E, Golenya IA, Dudarenko NM, Dobosz A, Haukka M, Fritsky IO, Swiatek-Kozlowska J (2007) New J Chem 31:1798–1805

    Article  CAS  Google Scholar 

  19. McDonald C, Whyte T, Taylor SM, Sanz S, Brechin EK, Gaynor D, Jones LF (2013) CrystEngComm 15:6672–6681

    Article  CAS  Google Scholar 

  20. Cutland AD, Halfen JA, Kampf JW, Pecoraro VL (2001) J Am Chem Soc 123:6211–6212

    Article  CAS  Google Scholar 

  21. Govor EV, Lysenko AB, Chernega AN, Howard JAK, Mokhir AA, Sieler J, Domasevitch KV (2008) Polyhedron 27:2349–2356

    Article  CAS  Google Scholar 

  22. Jankolovits J, Kampf JW, Maldonado S, Pecoraro VL (2010) Chem Eur J 16:6786–6796

    Article  CAS  Google Scholar 

  23. Jankolovits J, Cutland-Van Noord AD, Kampf JW, Pecoraro VL (2013) Dalton Trans 42:9803–9808

    Article  CAS  Google Scholar 

  24. Pavlishchuk AV, Kolotilov SV, Zeller M, Thompson LK, Addison AW (2014) Inorg Chem 53:1320–1330

    Article  CAS  Google Scholar 

  25. Bodwin JJ, Pecoraro VL (2000) Inorg Chem 39:3434–3435

    Article  Google Scholar 

  26. Dang D, Gao H, Bai Y, Pan X, Shang W (2010) J Mol Struct 969:120–125

    Article  CAS  Google Scholar 

  27. Han L, Qin L, Yan X-Z, Xu L-P, Sun J, Yu L, Chen H-B, Zou X (2013) Cryst Growth Des 13:1807–1811

    Article  CAS  Google Scholar 

  28. Moon M, Kim I, Lah MS (2000) Inorg Chem 39:2710–2711

    Article  CAS  Google Scholar 

  29. Wang R, Hong M, Luo J, Cao R, Weng J (2003) Chem Commun 1018–1019

  30. Moon D, Song J, Kim BJ, Suh BJ, Lah MS (2004) Inorg Chem 43:8230–8232

    Article  CAS  Google Scholar 

  31. Moon D, Lah MS (2005) Inorg Chem 44:1934–1940

    Article  CAS  Google Scholar 

  32. Lago AB, Pasán J, Cañadillas-Delgao L, Fabelo O, Casado FJM, Julve M, Lloret F, Ruiz-Pérez C (2011) New J Chem 35:1817–1822

    Article  CAS  Google Scholar 

  33. Meng X, Song X-Z, Song S-Y, Yang G-C, Zhu M, Hao Z-M, Zhao S-N, Zhang H-J (2013) Chem Commun 49:8483–8485

    Article  CAS  Google Scholar 

  34. Wang K, Zou H-H, Chen Z-L, Zhang Z, Sun W-Y, Liang F-P (2014) Dalton Trans 43:12989–12995

    Article  CAS  Google Scholar 

  35. Zaleski CM, Tricard S, Depperman EC, Wernsdorfer W, Mallah T, Kirk ML, Pecoraro VL (2011) Inorg Chem 50:11348–11352

    Article  CAS  Google Scholar 

  36. Shah SJ, Ramsey CM, Heroux KJ, O’Brien JR, DiPasquale AG, Rheingold AL, del Barco E, Hendrickson DN (2008) Inorg Chem 47:6245–6253

    Article  CAS  Google Scholar 

  37. Bruker (2007) Apex2. Bruker AXS Inc, Madison

    Google Scholar 

  38. Bruker (2001) SADABS. Bruker AXS Inc, Madison

    Google Scholar 

  39. Sheldrick GM (2008) Acta Cryst A64:112–122

    Article  Google Scholar 

  40. Sheldrick GM (2013) SHELXL2013. University of Göttingen, Germany

    Google Scholar 

  41. Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281–1284

    Article  Google Scholar 

  42. Liu W, Thorp HH (1993) Inorg Chem 32:4102–4105

    Article  CAS  Google Scholar 

  43. Addison AW, Rao TN, Reedikj J, van Rijn J, Verschoor GG (1984) J Chem Soc Dalton Trans 7:1349–1356

    Article  Google Scholar 

  44. Lah MS, Pecoraro VL (1991) Inorg Chem 30:878–880

    Article  CAS  Google Scholar 

  45. Gibney BR, Wang H, Kampf JW, Pecoraro VL (1996) Inorg Chem 35:6184–6193

    Article  CAS  Google Scholar 

  46. Kessissoglou DP, Bodwin JJ, Kampf J, Dendrinou-Samara C, Pecoraro VL (2002) Inorg Chim Acta 331:73–80

    Article  CAS  Google Scholar 

  47. Azar MR, Boron TT, Lutter JC, Daly CI, Zegalia KA, Nimthong R, Ferrence GM, Zeller M, Kampf JW, Pecoraro VL, Zaleski CM (2014) Inorg Chem 53:1729–1742

    Article  CAS  Google Scholar 

  48. Dendrinou-Samara C, Papadopoulos AN, Malamatari DA, Tarushi A, Raptopoulou CP, Terzis A, Samaras E, Kessissoglou DP (2005) J Inorg Biochem 99:864–875

    Article  CAS  Google Scholar 

  49. Koumousi ES, Mukherjee S, Beavers C, Teat SJ, Christou G, Stamatatos TC (2011) Chem Commun 47:11128–11130

    Article  CAS  Google Scholar 

  50. Pecoraro VL, Stemmler AJ, Gibney BR, Bodwin JJ, Wang H, Kampf JW, Barwinski A (1997) In: Karlin KD (ed) Progress in Inorganic Chemistry, vol 45. John Wiley and Sons Inc, New York

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Shippensburg University Foundation Grant UGR2013/2014-1 to KAM and CMZ and by the Shippensburg University SURE Program to EJL and CMZ. The Smart Apex diffractometer was funded by National Science Foundation Grant 0087210, by Ohio Board of Regents Grant CAP-491, and by YSU. The D8 Quest X-ray diffractometer was funded by NSF Grant 1337296. The authors thank Dr. Arunpatcha Roldan for the collection of unit cell data. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis M. Zaleski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mengle, K.A., Longenecker, E.J., Zeller, M. et al. One-Dimensional Coordination Polymers of 12-Metallacrown-4 Complexes: {Na2(L)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4]} n , where L is Either O2CCH2CH3 or O2CCH2CH2CH3 . J Chem Crystallogr 45, 36–43 (2015). https://doi.org/10.1007/s10870-014-0560-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0560-0

Keywords

Navigation