Journal of Chemical Crystallography

, Volume 45, Issue 1, pp 36–43 | Cite as

One-Dimensional Coordination Polymers of 12-Metallacrown-4 Complexes: {Na2(L)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4]} n , where L is Either O2CCH2CH3 or O2CCH2CH2CH3

  • Kelsey A. Mengle
  • Emily J. Longenecker
  • Matthias Zeller
  • Curtis M. ZaleskiEmail author
Original Paper


The metallacrown one-dimensional coordination polymers {Na2(O2CCH2CH3)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4](DMF)4(H2O)2}, 1, and {Na2(O2CCH2CH2CH3)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4](DMF)4(H2O)2}, 2, where shi3− is salicylhydroximate and DMF is N,N-dimethylformamide, have been synthesized and characterized by single-crystal X-ray diffraction. Both compounds crystallize in the triclinic space group \(P\overline{1}\)with a = 8.0212(5) Å, b = 13.2214(8) Å, c = 13.3724(8) Å, α = 102.459(2)°, β = 97.185(2)°, γ = 93.545(2)°, V = 1368.11(14) Å3, and Z = 2 for 1 and with a = 8.0141(8) Å, b = 13.3871(13) Å, c = 13.5008(14) Å, α = 99.311(4)°, β = 96.308(4)°, γ = 92.249(3)°, V = 1418.3(2) Å3, and Z = 2 for 2. The one-dimensional chains are generated by neighboring metallacrown molecules being linked by a total of four propionate, 1, or butyrate, 2, anions (two per metallacrown face) through the ring MnIII ions. Under certain synthetic conditions, the discrete complex Na2(O2CCH2CH2CH3)2[12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4](DMF)6·DMF·HO2CCH2CH2CH3, 3, may be produced instead of the coordination polymer. Characterization of 3 by single-crystal X-ray diffraction yields the triclinic space group \(P\overline{1}\) with a = 10.703(2) Å, b = 12.036(2) Å, c = 14.810(3) Å, α = 77.915(3)°, β = 76.417(3)°, γ = 80.043(3)°, V = 1798.0(6) Å3, and Z = 1. The individual 12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4 frameworks of 1 and 2 are distorted to a greater extent with a higher degree of a ruffled structure when compared to 3. For 1 and 2, the benzene rings of the shi3− ligands are at a greater distance from the mean plane of the ring MnIII ions (MnP). When measured from the carbon para to the phenolate oxygen atom of the shi3− to the MnMP, the distances in 1 and 2 are greater than that in 3: 2.0760(22), 2.0025(59), and 1.2370(34) Å, respectively.

Graphical Abstract

This manuscript provides structural descriptions of two one-dimensional coordination polymers formed by manganese-based metallacrown molecules and bridging carboxylate anions. The four carboxylate anions, propionate or butyrate, link ring MnIII ions of adjacent [12-\({\rm{M}}{{\rm{C}}_{{\rm{M}}{{\rm{n}}^{{\rm{III}}}}{\rm{(N)shi}}}}\)-4] building blocks to produce a one-dimensional chain.


Metallacrown Manganese Coordination polymer One-dimensional chain 



This work was funded by the Shippensburg University Foundation Grant UGR2013/2014-1 to KAM and CMZ and by the Shippensburg University SURE Program to EJL and CMZ. The Smart Apex diffractometer was funded by National Science Foundation Grant 0087210, by Ohio Board of Regents Grant CAP-491, and by YSU. The D8 Quest X-ray diffractometer was funded by NSF Grant 1337296. The authors thank Dr. Arunpatcha Roldan for the collection of unit cell data. The authors declare that they have no conflict of interest.


  1. 1.
    Pecoraro VL (1989) Inorg Chim Acta 155:171–173CrossRefGoogle Scholar
  2. 2.
    Mezei G, Zaleski CM, Pecoraro VL (2007) Chem Rev 107:4933–5003CrossRefGoogle Scholar
  3. 3.
    Pecoraro VL, Bodwin JJ, Cutland AD (2000) J Solid State Chem 152:68–77CrossRefGoogle Scholar
  4. 4.
    Janiak C (2003) Dalton Trans 2781–2804Google Scholar
  5. 5.
    Horike S, Umeyama D, Kitagawa S (2013) Accounts Chem Res 46:2376–2384CrossRefGoogle Scholar
  6. 6.
    Jeon I-R, Clérac R (2012) Dalton Trans 41:9569–9586CrossRefGoogle Scholar
  7. 7.
    Mukherjee S, Mukherjee PS (2013) Accounts Chem Res 46:2556–2566CrossRefGoogle Scholar
  8. 8.
    Pardo E, Ruiz-García R, Cano J, Ottenwaelder X, Lescouëzec R, Journaux Y, Lloret F, Julve M (2008) Dalton Trans 2780–2805Google Scholar
  9. 9.
    Luzon J, Sessoli R (2012) Dalton Trans 41:13556–13567CrossRefGoogle Scholar
  10. 10.
    Woodruff DN, Winpenny REP, Layfield RA (2013) Chem Rev 113:5110–5148CrossRefGoogle Scholar
  11. 11.
    Liu X and Li Y (2009) Dalton Trans 6447–6457Google Scholar
  12. 12.
    Wang C, Zhang T, Lin W (2012) Chem Rev 112:1084–1104CrossRefGoogle Scholar
  13. 13.
    Reddy MLP, Sivakumar S (2013) Dalton Trans 42:2663–2678CrossRefGoogle Scholar
  14. 14.
    Rach SF, Kühn FE (2009) Chem Rev 109:2061–2080CrossRefGoogle Scholar
  15. 15.
    Leong WL, Vittal JJ (2011) Chem Rev 111:688–764CrossRefGoogle Scholar
  16. 16.
    Cutland-Van Noord AD, Kampf JW, Pecoraro VL (2002) Angew Chem Int Ed 41:4668–4670CrossRefGoogle Scholar
  17. 17.
    Kurzak B, Farkas E, Glowiak T, Kozlowski H (1991) J Chem Soc Dalton Trans 163–167Google Scholar
  18. 18.
    Gumienna-Kontecka E, Golenya IA, Dudarenko NM, Dobosz A, Haukka M, Fritsky IO, Swiatek-Kozlowska J (2007) New J Chem 31:1798–1805CrossRefGoogle Scholar
  19. 19.
    McDonald C, Whyte T, Taylor SM, Sanz S, Brechin EK, Gaynor D, Jones LF (2013) CrystEngComm 15:6672–6681CrossRefGoogle Scholar
  20. 20.
    Cutland AD, Halfen JA, Kampf JW, Pecoraro VL (2001) J Am Chem Soc 123:6211–6212CrossRefGoogle Scholar
  21. 21.
    Govor EV, Lysenko AB, Chernega AN, Howard JAK, Mokhir AA, Sieler J, Domasevitch KV (2008) Polyhedron 27:2349–2356CrossRefGoogle Scholar
  22. 22.
    Jankolovits J, Kampf JW, Maldonado S, Pecoraro VL (2010) Chem Eur J 16:6786–6796CrossRefGoogle Scholar
  23. 23.
    Jankolovits J, Cutland-Van Noord AD, Kampf JW, Pecoraro VL (2013) Dalton Trans 42:9803–9808CrossRefGoogle Scholar
  24. 24.
    Pavlishchuk AV, Kolotilov SV, Zeller M, Thompson LK, Addison AW (2014) Inorg Chem 53:1320–1330CrossRefGoogle Scholar
  25. 25.
    Bodwin JJ, Pecoraro VL (2000) Inorg Chem 39:3434–3435CrossRefGoogle Scholar
  26. 26.
    Dang D, Gao H, Bai Y, Pan X, Shang W (2010) J Mol Struct 969:120–125CrossRefGoogle Scholar
  27. 27.
    Han L, Qin L, Yan X-Z, Xu L-P, Sun J, Yu L, Chen H-B, Zou X (2013) Cryst Growth Des 13:1807–1811CrossRefGoogle Scholar
  28. 28.
    Moon M, Kim I, Lah MS (2000) Inorg Chem 39:2710–2711CrossRefGoogle Scholar
  29. 29.
    Wang R, Hong M, Luo J, Cao R, Weng J (2003) Chem Commun 1018–1019Google Scholar
  30. 30.
    Moon D, Song J, Kim BJ, Suh BJ, Lah MS (2004) Inorg Chem 43:8230–8232CrossRefGoogle Scholar
  31. 31.
    Moon D, Lah MS (2005) Inorg Chem 44:1934–1940CrossRefGoogle Scholar
  32. 32.
    Lago AB, Pasán J, Cañadillas-Delgao L, Fabelo O, Casado FJM, Julve M, Lloret F, Ruiz-Pérez C (2011) New J Chem 35:1817–1822CrossRefGoogle Scholar
  33. 33.
    Meng X, Song X-Z, Song S-Y, Yang G-C, Zhu M, Hao Z-M, Zhao S-N, Zhang H-J (2013) Chem Commun 49:8483–8485CrossRefGoogle Scholar
  34. 34.
    Wang K, Zou H-H, Chen Z-L, Zhang Z, Sun W-Y, Liang F-P (2014) Dalton Trans 43:12989–12995CrossRefGoogle Scholar
  35. 35.
    Zaleski CM, Tricard S, Depperman EC, Wernsdorfer W, Mallah T, Kirk ML, Pecoraro VL (2011) Inorg Chem 50:11348–11352CrossRefGoogle Scholar
  36. 36.
    Shah SJ, Ramsey CM, Heroux KJ, O’Brien JR, DiPasquale AG, Rheingold AL, del Barco E, Hendrickson DN (2008) Inorg Chem 47:6245–6253CrossRefGoogle Scholar
  37. 37.
    Bruker (2007) Apex2. Bruker AXS Inc, MadisonGoogle Scholar
  38. 38.
    Bruker (2001) SADABS. Bruker AXS Inc, MadisonGoogle Scholar
  39. 39.
    Sheldrick GM (2008) Acta Cryst A64:112–122CrossRefGoogle Scholar
  40. 40.
    Sheldrick GM (2013) SHELXL2013. University of Göttingen, GermanyGoogle Scholar
  41. 41.
    Hübschle CB, Sheldrick GM, Dittrich B (2011) J Appl Cryst 44:1281–1284CrossRefGoogle Scholar
  42. 42.
    Liu W, Thorp HH (1993) Inorg Chem 32:4102–4105CrossRefGoogle Scholar
  43. 43.
    Addison AW, Rao TN, Reedikj J, van Rijn J, Verschoor GG (1984) J Chem Soc Dalton Trans 7:1349–1356CrossRefGoogle Scholar
  44. 44.
    Lah MS, Pecoraro VL (1991) Inorg Chem 30:878–880CrossRefGoogle Scholar
  45. 45.
    Gibney BR, Wang H, Kampf JW, Pecoraro VL (1996) Inorg Chem 35:6184–6193CrossRefGoogle Scholar
  46. 46.
    Kessissoglou DP, Bodwin JJ, Kampf J, Dendrinou-Samara C, Pecoraro VL (2002) Inorg Chim Acta 331:73–80CrossRefGoogle Scholar
  47. 47.
    Azar MR, Boron TT, Lutter JC, Daly CI, Zegalia KA, Nimthong R, Ferrence GM, Zeller M, Kampf JW, Pecoraro VL, Zaleski CM (2014) Inorg Chem 53:1729–1742CrossRefGoogle Scholar
  48. 48.
    Dendrinou-Samara C, Papadopoulos AN, Malamatari DA, Tarushi A, Raptopoulou CP, Terzis A, Samaras E, Kessissoglou DP (2005) J Inorg Biochem 99:864–875CrossRefGoogle Scholar
  49. 49.
    Koumousi ES, Mukherjee S, Beavers C, Teat SJ, Christou G, Stamatatos TC (2011) Chem Commun 47:11128–11130CrossRefGoogle Scholar
  50. 50.
    Pecoraro VL, Stemmler AJ, Gibney BR, Bodwin JJ, Wang H, Kampf JW, Barwinski A (1997) In: Karlin KD (ed) Progress in Inorganic Chemistry, vol 45. John Wiley and Sons Inc, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kelsey A. Mengle
    • 1
  • Emily J. Longenecker
    • 1
  • Matthias Zeller
    • 2
  • Curtis M. Zaleski
    • 1
    Email author
  1. 1.Department of ChemistryShippensburg UniversityShippensburgUSA
  2. 2.Department of ChemistryOne University Plaza, Youngstown State UniversityYoungstownUSA

Personalised recommendations