Skip to main content
Log in

Crystal and Molecular Structures of Three Salts from Diethylenetriamine, 3,5-Dinitrobenzoic Acid, 2-Hydroxy-5-(Phenyldiazenyl)Benzoic Acid, and 5-Nitrosalicylic Acid

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The preparation, X-ray crystal structure, fourier transform infrared (FTIR) spectroscopy, and elemental analysis of three compounds based on diethylenetriamine and aromatic carboxylic acids are reported. XRD and FTIR analysis indicated that all these complexes are organic salt. The compound 1 crystallizes in the triclinic, space group P-1, with a = 8.5665(8) Å, b = 11.8387(9) Å, c = 12.4901(11) Å, α = 77.2580(10)°, β = 77.1820(10)°, γ = 78.290(2)°, V = 1,188.81(18) Å3, Z = 2. The compound 2 crystallizes in the triclinic, space group P-1, with a = 8.0040(7) Å, b = 9.4869(8) Å, c = 20.3491(18) Å, α = 84.6370(10)°, β = 87.032(2)°, γ = 78.9620(10)°, V = 1,509.0(2) Å3, Z = 2. The compound 3 crystallizes in the orthorhombic, space group Pbca, with a = 12.1232(11) Å, b = 13.5714(14) Å, c = 26.179(3) Å, α = 90°, β = 90°, γ = 90°, V = 4,307.3(7) Å3, Z = 8. The supramolecular architectures of 13 involve extensive hydrogen bonding including N–H···O, N–H···N, and O–H···O interactions as well as other non-covalent CH–O, CH2–O, O–π, NH3 +–π, CH2–π, and π···π interactions, giving 3D framework structures.

Graphical Abstract

The crystal structures of the diethylenetriamine salts with 3,5-dinitrobenzoic acid, 2-hydroxy-5-(phenyldiazenyl)benzoic acid, and 5-nitrosalicylic acid show extensive classical hydrogen bonding as well as other non-covalent CH–O, CH2–O, O–π, NH3 +–π, CH2–π, and π···π interactions, giving three-dimensional networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hu XY, Xiao TX, Lin C, Huang FH, Wang LY (2014) Acc Chem Res 47:2041

    Article  CAS  Google Scholar 

  2. Ni XL, Xiao X, Cong H, Zhu QJ, Xue SF, Tao Z (2014) Acc Chem Res 47:1386

    Article  CAS  Google Scholar 

  3. Lü J, Perez-Krap C, Suyetin M, Alsmail NH, Yan Y, Yang SH, Lewis W, Bichoutskaia E, Tang CC, Blake AJ, Cao R, Schröder M (2014) J Am Chem Soc 136:12828

    Article  Google Scholar 

  4. Desiraju GR (2013) J Am Chem Soc 135:9952

    Article  CAS  Google Scholar 

  5. Mukherjee A, Tothadi S, Desiraju GR (2014) Acc Chem Res 47:2514

    Article  CAS  Google Scholar 

  6. Dou Y, Jia Y, Zhou X, Zhang JX, Li XH (2011) Cryst Growth Des 11:899

    Article  CAS  Google Scholar 

  7. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  8. Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS, (2004) Eur J Inorg Chem 4572

  9. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386

    Article  CAS  Google Scholar 

  10. Janiak C, J Chem Soc Dalton Trans (2000) 3885

  11. Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049

    Article  CAS  Google Scholar 

  12. Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Crystallogr B40:159

    Article  CAS  Google Scholar 

  13. Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505

    Article  CAS  Google Scholar 

  14. Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808

    Article  CAS  Google Scholar 

  15. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  16. Braga D, Maini L, Paganelli F, Tagliavini E, Casolari S, Grepioni F (2001) J Organomet Chem 637–639:609

    Article  Google Scholar 

  17. Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM (2008) Inorg Chim Acta 361:173

    Article  CAS  Google Scholar 

  18. Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Eur J Inorg Chem 2238

  19. Maamen M, Gordon DM (1995) Acc Chem Res 28:37

    Article  Google Scholar 

  20. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106

    Article  CAS  Google Scholar 

  21. Du M, Zhang ZH, Zhao X (2005) J Cryst Growth Des 5:1247

    Article  CAS  Google Scholar 

  22. Desiraju GR (1989) Crystal engineering. The design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  23. Leiserowitz L (1976) Acta Crystallogr B32:775

    Article  CAS  Google Scholar 

  24. Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654

    Article  CAS  Google Scholar 

  25. Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936

    Article  CAS  Google Scholar 

  26. Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431

    Article  CAS  Google Scholar 

  27. Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378

    Article  CAS  Google Scholar 

  28. Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521

    Article  CAS  Google Scholar 

  29. Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547

    Article  CAS  Google Scholar 

  30. Pedireddi VR, Prakashareddy J (2002) Tetrahedron Lett 43:4927

    Article  CAS  Google Scholar 

  31. Refat MS, Elfalaky A, Elesh E (2011) J Mol Struct 990(1–3):217

    Article  CAS  Google Scholar 

  32. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 47:386

    Article  Google Scholar 

  33. Shattock TR, Arora KK, Vishweshwar P, Zaworotko MJ (2008) Cryst Growth Des 8:4533

    Article  CAS  Google Scholar 

  34. Biradha K, Mahata G (2005) Cryst Growth Des 5:61

    Article  CAS  Google Scholar 

  35. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    Article  CAS  Google Scholar 

  36. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    Article  CAS  Google Scholar 

  37. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    Article  CAS  Google Scholar 

  38. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    Article  CAS  Google Scholar 

  39. Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978

    Article  CAS  Google Scholar 

  40. Grossel CM, Dwyer AN, Hursthouse MB, Orton JB (2006) CrystEngComm 8:123

    Article  CAS  Google Scholar 

  41. Ilioudis CA, Georganopoulou DG, Steed JW (2002) J Mater Chem 4:26

    Google Scholar 

  42. Ilioudis CA, Hancock KSB, Georganopoulou DG, Steed JW (2000) New J Chem 24:787

    Article  CAS  Google Scholar 

  43. Pasban N, Esmhosseini M, Ahmadi M, Mohebbi M, Salkhordeh S, Vatani M (2012) New Cryst Struct 227:265

    CAS  Google Scholar 

  44. Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87

    Article  CAS  Google Scholar 

  45. Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Pol J Chem 83:1937

    CAS  Google Scholar 

  46. Bruker AXS (2004) SMART and SAINT. Bruker AXS, Madison

    Google Scholar 

  47. Sheldrick GM (2000) SHELXTL, structure determination software suite, version 6.14. Bruker AXS, Madison

    Google Scholar 

  48. Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867

    Article  CAS  Google Scholar 

  49. Smith G, White JM (2001) Aust J Chem 54:97

    Article  CAS  Google Scholar 

  50. Williams DH, Fleming I (1995) Spectroscopic methods in organic chemistry, 5th edn. McGraw-hill, London

    Google Scholar 

  51. Lazzarrotto M, Castellano EE, Nachtigall FF (2007) J Chem Crystallogr 37:699

    Article  Google Scholar 

  52. Abthorpe M, Trask AV, Jones W (2005) Acta Cryst E61:o609

    Google Scholar 

  53. Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555

    Article  CAS  Google Scholar 

  54. Xu YC, Jin SW, Zhu JL, Liu YJ, Shi CC (2011) Acta Cryst E67:o2528

    Google Scholar 

  55. Bakshi PK, Linden A, Vincent BR, Roe SP, Adhikesavalu D, Cameron TS, Knop O (1994) Can J Chem 72:1273

    Article  CAS  Google Scholar 

  56. Sundaralingam M, Jensen LH (1965) Acta Crystallogr 18:1053

    Article  CAS  Google Scholar 

  57. Simith G, Hartono AW, Wermuth UD, Healy PC, White JM, Rae AD (2005) Aust J Chem 58:47

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Zhejiang Provincial Natural Science Foundation of China under Grant No. LY14B010006, the Education Office Foundation of Zhejiang Province under Grant No. Y201017321, and the innovation project of the Tianmu College of the ZheJiang A & F University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, L., Zhang, H., Liu, H. et al. Crystal and Molecular Structures of Three Salts from Diethylenetriamine, 3,5-Dinitrobenzoic Acid, 2-Hydroxy-5-(Phenyldiazenyl)Benzoic Acid, and 5-Nitrosalicylic Acid. J Chem Crystallogr 45, 26–35 (2015). https://doi.org/10.1007/s10870-014-0559-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-014-0559-6

Keywords

Navigation