Journal of Chemical Crystallography

, Volume 44, Issue 11–12, pp 548–554 | Cite as

The Synthesis and Crystal Structures of Two Hydrogen-Bonded N-Oxides

  • E. Anne Brock
  • Stephen G. Davies
  • David S. Hewings
  • James A. Lee
  • Amber L. Thompson
  • James E. Thomson
Original Paper


(RS,RS,RS,RS)-3-(N-4′-Methoxyphenyl-N-methylamino)cyclohexane-1,2-diol N-oxide 10 and (1R,2S,3S,4R,7R,7aS,1′R)-1,2-dihydroxy-1,2-O-isopropylidene-3-(1′-hydroxy-2′-tert-butoxy-2′-oxoethyl)-7-(phenylthio)hexahydro-1H-pyrrolizine N(4)-oxide 14 were synthesised and studied by X-ray diffraction. The structure of 10·0.5CHCl3 crystallizes in the monoclinic space group P21/c with cell parameters of a = 22.8016(5) Å, b = 11.9666(2) Å, c = 11.6835(2) Å, β = 99.8698(9)°, V = 3140.75(10) Å3 and Z = 8, whereas N-oxide 14 crystallizes in the orthorhombic space group P212121 with cell parameters of a = 5.8296(1) Å, b = 16.0362(1) Å, c = 23.7167(2) Å, V = 2217.147(19) Å3 and Z = 4. These studies served to establish unambiguously the configurations within these substrates. In both cases, adjacent molecules are linked by a series of O–H···O–N hydrogen-bonds, with the N-oxide moieties participating as hydrogen-bond acceptors, to form tape-like arrangements.

Graphical Abstract

The structures of two N-oxides were studied by X-ray diffraction. In both cases, adjacent molecules are linked by a series of O–H···O–N hydrogen-bonds to form tape-like arrangements.


N-Oxide N-Oxidation Hydrogen-bonding 


  1. 1.
    Caron A, Palenik GJ, Goldish E, Donohue J (1964) Acta Cryst 17:102CrossRefGoogle Scholar
  2. 2.
    Aciro C, Davies SG, Kurosawa W, Roberts PM, Russell AJ, Thomson JE (2009) Org Lett 11:1333CrossRefGoogle Scholar
  3. 3.
    Aciro C, Claridge TDW, Davies SG, Roberts PM, Russell AJ, Thomson JE (2008) Org Biomol Chem 6:3751CrossRefGoogle Scholar
  4. 4.
    Aciro C, Davies SG, Roberts PM, Russell AJ, Smith AD, Thomson JE (2008) Org Biomol Chem 6:3762CrossRefGoogle Scholar
  5. 5.
    Bernstein J, Davis RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed 34:1555CrossRefGoogle Scholar
  6. 6.
    Cresswell AJ, Davies SG, Hewings DS, Kurosawa W, Lee JA, Morris MJ, Roberts PM, Thompson AL, Thomson JE (2013) J Chem Crystallogr 43:646CrossRefGoogle Scholar
  7. 7.
    Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE (2011) Org Lett 13:1594CrossRefGoogle Scholar
  8. 8.
    Brock EA, Davies SG, Lee JA, Roberts PM, Thomson JE (2013) Org Biomol Chem 11:3187CrossRefGoogle Scholar
  9. 9.
    Cosier J, Glazer AM (1986) J Appl Crystallogr 19:105CrossRefGoogle Scholar
  10. 10.
    Otwinowski Z, Minor W (1997) Methods enzymol. Academic Press, New York, pp 307–326Google Scholar
  11. 11.
    Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435Google Scholar
  12. 12.
    Betteridge PW, Carruthers JR, Cooper RI, Prout CK, Watkin DJ (2003) J Appl Crystallogr 36:1487CrossRefGoogle Scholar
  13. 13.
    Cooper RI, Thompson AL, Watkin DJ (2010) J Appl Cryst 43:1100CrossRefGoogle Scholar
  14. 14.
    Cymerman Craig J, Purushothaman KK (1970) J Org Chem 35:1721Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. Anne Brock
    • 1
  • Stephen G. Davies
    • 1
  • David S. Hewings
    • 1
  • James A. Lee
    • 1
  • Amber L. Thompson
    • 1
  • James E. Thomson
    • 1
  1. 1.Chemistry Research Laboratory, Department of ChemistryUniversity of OxfordOxfordUK

Personalised recommendations