Skip to main content
Log in

Cocrystals of 2,4-Diamino-6-phenyl-1,3,5-triazine with Dicarboxylic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Structural studies on the cocrystals of 2,4-diamino-6-phenyl-1,3,5-triazine (dpt) with oxalic acid (Oxa), succinic acid (Suc), adipic acid (Adp), fumaric acid (Fum) and maleic acid (Mal) abbreviated as Oxa·2dpt (1), Suc·2dpt (2), Adp·2dpt (3), Fum·2dpt (4) and Mal·2dpt (5) have been carried out. The packing patterns of 14 are assembling of end capped dicarboxylic acids with lengths varying from 23 to 28 Å. In the cocrystal 1 the oxalic acid molecules are involved in R 22 (9) and R 22 (6) type hydrogen bonds. The oxalic acid molecules have lateral orientation with respect to dpt, which reduces the length of the end-capped structure from a possible longitudinal orientation. It also makes difference from the longitudinal orientations of the dicarboxylic acids observed in the cocrystals 24. The structures of the cocrystals 24 are guided by conventional R 22 (8) type of interactions between a nitrogen and amine group of heterocycle with carboxylic acid groups. The cocrystal 5 has dimeric assemblies of dpt bridged by maleic acid molecules to form infinite zipper like structure.

Graphical Abstract

The structure of the cocrystals of 2,4-diamino-6-phenyl-1,3,5-triazine (dpt) with oxalic acid, succinic acid, adipic acid, fumaric acid are comprised of end capped subunits of length in the range of 23–28 Å, which are comprised of one acid and two dpt molecules whereas cocrystal of dpt with maleic acid has assemblies of infinite zipper like structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lackinge M, Heckl WM (2009) Langmuir 25:11307–11321

    Article  Google Scholar 

  2. Giancarlo LC, Flynn GW (2000) Acc Chem Res 33:491–501

    Article  CAS  Google Scholar 

  3. Steiner T (2002) Angew Chem Int Ed Engl 47:48–76

    Article  Google Scholar 

  4. Somphon W, Haller KJ (2013) J Cryst Growth 362:252–258

    Article  CAS  Google Scholar 

  5. Kathalikkattil AC, Damodaran S, Bisht KK, Suresh E (2011) J Mol Struct 985:361–370

    Article  CAS  Google Scholar 

  6. Singh WM, Barooah N, Baruah JB (2008) J Mol Struct 875:329–338

    Article  Google Scholar 

  7. Shimizu T, Usui T, Machida K, Furuya K, Osadab H, Nakata T (2002) Bioorg Med Chem Lett 12:3363–3366

    Article  CAS  Google Scholar 

  8. Owens L, Thilgen C, Diederich F, Knobler CB (1993) Helv Chim Acta 76:2767–2774

    Article  Google Scholar 

  9. Almquist RG, Chao WR, White CJ (1985) J Med Chem 28:1067–1071

    Article  CAS  Google Scholar 

  10. Arbuse A, Anda C, Martínez MA, Perez-Miron J, Jaime C, Parella T, Llobet A (2007) Inorg Chem 46:10632–10638

    Article  CAS  Google Scholar 

  11. Karle IL, Ranganathan D, Haridas V (1997) J Am Chem Soc 119:2777–2783

    Article  CAS  Google Scholar 

  12. Etter MC (1990) Acc Chem Res 23:120–126

    Article  CAS  Google Scholar 

  13. Etter MC, MacDonald JC, Bernstein J (1990) Acta Crystallogr B46:256–262

    CAS  Google Scholar 

  14. Schlesinger PH, Ferdani R, Liu J, Pajewska J, Pajewki R, Saito M, Shabany H, Gokel GW (2002) J Am Chem Soc 124:1848–1849

    Article  CAS  Google Scholar 

  15. Bowker MJA, Stahl PH, Wermuth CG (2002) Procedure for salt selection and optimisation. Handbook of pharmaceutical salts. Wiley, New York

    Google Scholar 

  16. Mohamed S, Tocher DA, Vickers M, Karamertzanis PG, Price SL (2009) Cryst Growth Des 9:2881–2889

    Article  CAS  Google Scholar 

  17. Singh D, Bhattacharyya P, Baruah JB (2010) Cryst Growth Des 10:348–356

    Article  CAS  Google Scholar 

  18. Childs SL, Stahly GP, Park A (2007) Mol Pharm 4:323–338

    Article  CAS  Google Scholar 

  19. Bhattacharya S, Saha BK (2011) Cryst Growth Des 11:2194–2204

    Article  CAS  Google Scholar 

  20. Hug S, Tauchert ME, Li S, Pachmayr UE, Lotsch BV (2012) J Mater Chem 22:13956–13964

    Article  CAS  Google Scholar 

  21. Habibi MH, Zendehdel MH, Barati K, Harrington RW, Clegg W (2007) Acta Crystallogr 63C:o474–o476

    Google Scholar 

  22. Kubicki M, Codding PW (2001) J Mol Struct 570:53–60

    Article  CAS  Google Scholar 

  23. Lee Tu, Wang PY (2010) Cryst Growth Des 10:1419–1434

    Article  CAS  Google Scholar 

  24. Wenger M, Bernstein J (2008) Cryst Growth Des 8:1595–1598

    Article  CAS  Google Scholar 

  25. Alhalaweh A, George S, Bostrom D, Velaga SP (2010) Cryst Growth Des 10:4847–4855

    Article  CAS  Google Scholar 

  26. Friscic T, Trask AV, Motherwell WDS, Jones W (2008) Cryst Growth Des 8:1605–1609

    Article  CAS  Google Scholar 

  27. Issa N, Barnett SA, Mohamed S, Braun DE, Copley RCB, Tochera DA, Price SL (2012) CrystEngComm 14:2454–2464

    Article  CAS  Google Scholar 

  28. Clawson JS, Vogt FG, Brum J, Sisko J, Patience DB, Dai W, Sharpe S, Jones AD, Pham TN, Johnson MN, Copley RCP (2008) Cryst Growth Des 8:4120–4131

    Article  CAS  Google Scholar 

  29. Zhang S, Rasmuson AC (2012) CrystEngComm 14:4644–4655

    Article  CAS  Google Scholar 

  30. Tothadi S, Desiraju GR (2010) Cryst Growth Des 12:6188–6198

    Article  Google Scholar 

  31. Chadha R, Saini A, Jain SD, Venugopalan P (2012) Cryst Growth Des 12:4211–4224

    Article  CAS  Google Scholar 

  32. Nonappa LM, Kolehmainen E, Haarala J, Shevchenko A (2013) Cryst Growth Des 13:346–351

    Article  CAS  Google Scholar 

  33. Aakeroy CB, Hussain I, Desper J (2006) Cryst Growth Des 6:474–480

    Article  Google Scholar 

  34. Haynes DA, Pietersen LK (2008) CrystEngComm 10:518–524

    Article  CAS  Google Scholar 

  35. Beko SL, Schmidt MU, Bond AD (2012) CrystEngComm 14:1967–1971

    Article  Google Scholar 

  36. Espinosa-Lara JC, Guzman-Villanueva D, Arenas-Garcia JI, Herrera-Ruiz D, Rivera-Islas J, Roman-Bravo P, Morales-Rojas Hugo, Hopfl H (2013) Cryst Growth Des 13:169–185

    Article  CAS  Google Scholar 

  37. Trask AV, Motherwell WDS, Jones W (2005) Cryst Growth Des 5:1013–1021

    Article  CAS  Google Scholar 

  38. Kastelic J, Hodnik Z, Sket P, Plavec J, Lah N, Leban I, Pajk M, Planinšek O, Kikelj D (2010) Cryst Growth Des 10:4943–4953

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jubaraj B. Baruah.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9758 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jali, B.R., Baruah, J.B. Cocrystals of 2,4-Diamino-6-phenyl-1,3,5-triazine with Dicarboxylic Acids. J Chem Crystallogr 43, 531–537 (2013). https://doi.org/10.1007/s10870-013-0453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0453-7

Keywords

Navigation