Skip to main content
Log in

Synthesis and Crystal Structures of Four New Dihydropyridine Derivatives

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Four new Hantzsch 1,4-dihydropyridine derivatives, dimethyl 4-(4-hydroxy-3-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, (I), dimethyl 4-(4-bromophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, (II), dimethyl 4-(3-bromo-4-methoxyphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, (III), and dimethyl 2-(2,5-dimethoxyphenyl)-4,6-dimethyl-1,2-dihydropyridine-3,5-dicarboxylate, (IV), have been synthesized and examined by X-ray crystallography, B3LYP/6-31 G (d) molecular orbital calculations and Hirshfeld surface and fingerprint plots. (I), C18H20NO6, is monoclinic with space group P21/n and cell constants a = 9.60810(10) Å, b = 7.41900(10) Å, c = 24.1821(3) Å, = 94.1970(10)°, V = 1719.14(4) Å3, and Z = 4. (II), C17H15BrN2O6, is orthorhombic with space group P212121 and cell constants a = 11.8865(5) Å, b = 13.1157(4) Å, c = 21.9515(9) Å, V = 3422.2(2) Å3, and Z = 8. (III), C18H20BrNO5, is orthorhombic with space group Pbca and cell constants a = 8.55470(10) Å, b = 15.5248(2) Å, 27.0657(5) Å, V = 3594.60(9) Å3, and Z = 8. (IV), C19H23NO6, is orthorhombic with space group Pbca and cell constants a = 11.6798(3) Å, b = 13.6319(3) Å, 23.0976(5) Å, V = 3677.55(15) Å3, and Z = 8. The first three have the same 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate skeleton with different substituted phenyl ligands attached to the 4-site of the dihydropyridine ring. The fourth derivative (IV) consists of a related 4,6-dimethyl-1,2-dihydropyridine-3,5-dicarboxylate skeleton with 2,5-dimethoxyphenyl and methyl ligands attached to the 2 and 4 sites of the 1,2-dihydropyridine ring. The dihedral angle between the mean planes of the dihydropyridine and benzene rings is 89.6(2)° (I), 86.0(6)° or 87.2(9)° (II), 87.7(6)° (III), and 87.3(8)° (IV), respectively. O–H··· (I), N–H···O (II), N–H···O (IV) hydrogen bonds and weak N–H···O, C–H···O (I), C–H···O (II), N–H···O (III), C–H···O (IV) intermolecular hydrogen bond interactions help stabilize crystal packing in each of their unit cells. A comparison of the angles between mean planes of the benzene rings in the crystals and with the DFT theoretical calculation as well as inclusion of weak intermolecular hydrogen bond interactions has been included for each molecule. Hirshfeld surface analysis for visually analyzing intermolecular interactions in crystal structures employing 3D molecular surface contours and 2D fingerprint plots have also been used to examine molecular shapes. Molecular orbital diagrams provide visual representations of the top level molecular orbital surfaces in each compound.

Graphical Abstract

Synthesis, crystal structures, density functional theory (DFT), Hirshfeld and molecular orbital surface calculations of four new dihydropyridine derivitives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gaudio AC, Korolkovas A, Takahata Y (1994) J Pharm Sci 83:1110–1115

    Article  CAS  Google Scholar 

  2. Sabitha G, Reddy SKK, Reddy CS, Yadav JS (2003) Tetrahedron Lett 44:4129–4131

    Article  CAS  Google Scholar 

  3. Böcker RH, Guengerich FP (1986) J Med Chem 29:1596–1603

    Article  Google Scholar 

  4. Gordeev MF, Patel DV, Gordon EM (1996) J Org Chem 61:924–928

    Article  CAS  Google Scholar 

  5. Zolfigol MA, Choghamarani AG, Shahamirian M, Safaiee M, Baltork IM, Mallakpour S, Alibeik AM (2005) Tetrahedron Lett 46:5581–5584

    Article  CAS  Google Scholar 

  6. Loev B, Snader KM (1965) J Org Chem 30:1914–1916

    Article  CAS  Google Scholar 

  7. Loh WS, Fun HK, Reddy BP, Vijayakumar V, Sarveswari S (2010) Acta Crystallogr E66:o587–o588

    Google Scholar 

  8. Fun HK, Quah CK, Reddy BP, Sarveswari S, Vijayakumar V (2009) Acta Crystallogr E65:o2255–o2256

    Google Scholar 

  9. Shahani T, Fun HK, Reddy BP, Vijayakumar V, Sarveswari S (2010) Acta Crystallogr E 66:o1355–o1356

    Article  CAS  Google Scholar 

  10. Boulcina R, Bouacida S, Roisnel T, Debache A (2007) Acta Crystallogr E63:o3635–o3636

    Google Scholar 

  11. Caignan GA, Holt EM (2001) Acta Crystallogr C 57:934–935

    Article  CAS  Google Scholar 

  12. Metcalf SK, Holt EM (2000) Acta Crystallogr C 56:1228–1231

    Article  Google Scholar 

  13. Oxford Diffraction, CrysAlisPRO (2007) Version 171.31.8 and CrysAlisRED (2007) Version 1.171.31.8 Oxford Diffraction Ltd, Abingdon

  14. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  15. Bruker, SHELXTL, Bruker AXS Inc., (2006) Madison

  16. Spek AL (2001) PLATON—a multipurpose crystallographic tool, Ultrecht University, Ultrecht

  17. Johnson CK (1976) ORTEP II. Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge

  18. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor RJ (1987) Chem Soc Perkin Trans 2:S1–S19

    Article  Google Scholar 

  19. Schmidt JR, Polik WF (2007) WebMO Pro, version 8.0.01e; WebMO, LLc: Holland. Available from http://www.webmo.net

  20. Frisch MJ et al (2004) Gaussian 03, Revision C01, Wallingford

  21. Becke AD (1998) Phys Rev A38:3098

    Google Scholar 

  22. Lee C, Yang W, Parr RG (1988) Phys Rev B37:785

    Google Scholar 

  23. Hehre WJ, Random L, Schleyer PR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York

    Google Scholar 

  24. Spackman MA, Jayatilaka D (2009) CrystEngComm 11:19

    Article  CAS  Google Scholar 

  25. Georgakopoulous S, Grondelle RV, Zwan GVD (2004) J Biophys 87:3010–3022

    Article  Google Scholar 

  26. Guzin A (2002) Turk J Chem 26:295–302

    Google Scholar 

  27. IGOR Pro, 1988–2009, WaveMetrics, P.O. Box 2088, Lake Oswego, Oregon, 97035, USA

  28. McKinnon JJ, Jayatilaka D, Spackman MA (2007) Chem Commun 37:3214

    Google Scholar 

  29. McKinnon JJ, Spackman MA, Mitchell AS (2004) Acta Crystallogr B 60:627

    Article  Google Scholar 

  30. dnorm = (di-rvdw)/rvdw + (di + rvdw)/rvdw

  31. Wolff SK, Grimwood DJ, McKinnon JJ, Jayatilaka D, Spackman MA (2007) CrystalExplorer 2.1, University of Western Australia, Perth, hirshfeldsurface.net/CrystalExplorer

  32. Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BN and SS thank Mangalore University and the UGC SAP for financial assistance for the purchase of chemicals. HSY thanks UOM for a sabbatical leave. RJB acknowledges the NSF MRI program (Grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry P. Jasinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jasinski, J.P., Guild, C.J., Pek, A.E. et al. Synthesis and Crystal Structures of Four New Dihydropyridine Derivatives. J Chem Crystallogr 43, 429–442 (2013). https://doi.org/10.1007/s10870-013-0440-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0440-z

Keywords

Navigation