Advertisement

Journal of Chemical Crystallography

, Volume 43, Issue 6, pp 306–309 | Cite as

Structure of 1-tert-Butyl-3-hydroxymethyl-3-nitroazetidine and 1-Bromoacetyl-3,3-dinitroazetidine, an Investigative Anticancer Agent Derived from Energetic Materials

  • Jeffrey R. Deschamps
  • Louis F. Cannizzo
  • Nicholas A. Straessler
Original Paper

Abstract

The structures of a novel investigative anticancer agent 1-bromoacetyl-3,3-dinitro azetidine (ABDNAZ, 2) and its synthetic precursor 1-tert-butyl-3-hydroxymethyl-3-nitroazetidine (1) were determined by single crystal X-ray diffraction. The data show that the chemical transformation from 1 to 2 resulted in an increase in crystal density of 0.725 Mg/m3 (1 = 1.232 Mg/m3; 2 = 1.957 Mg/m3). The azetidine ring of 1 is puckered while 2 is planar, consistent with sp2 hybridization of the ring nitrogen following conversion of the tertiary amine to an amide. The structural information will aid in elucidating the biological activity of 2.

Graphical Abstract

Single crystal X-ray diffraction studies revealed that conversion of 1-tert-butyl-3-hydroxymethyl-3-nitroazetidine to 1-bromoacetyl-3,3-dinitroazetidine results inflattening of the azetidine ring due to sp2 hybridization of the ring nitrogen, and a crystal density increase of 0.725 Mg/m3 (1.232 vs. 1.957 Mg/m3 respectively) is observed.

Keywords

1-Bromoacetyl-3,3-dinitroazetidine ABDNAZ 1-tert-Butyl-3-hydroxymethyl-3-nitroazetidine Anticancer energetic materials Nitrogen-heterocycle 

Notes

Acknowledgments

X-ray crystallographic studies were supported in part by the Naval Research Laboratory and the Office of Naval Research. The bioactivity and therapeutic applications of compound 2 are being investigated by RadioRx, Inc. (http://www.radiorx.com, Menlo Park, CA).

Supplementary material

10870_2013_421_MOESM1_ESM.doc (465 kb)
Supplementary material 1 (DOC 465 kb)

References

  1. 1.
    Hiskey MA, Stinecipher MM, Brown JE (1993) J Energ Mater 11:157–166CrossRefGoogle Scholar
  2. 2.
    Hiskey MA, Johnson MC, Chavez DE (1999) J Energ Mater 17:233–254CrossRefGoogle Scholar
  3. 3.
    Archibald TG, Gilardi R, Baum K, George C (1990) J Org Chem 55:2920–2924CrossRefGoogle Scholar
  4. 4.
    Axenrod T, Watnick C, Yazdekhasti H, Dave PR (1995) J Org Chem 60:1959–1964CrossRefGoogle Scholar
  5. 5.
    Marchand AP, Rajagopal D, Bott SG (1995) J Org Chem 60:4943–4946CrossRefGoogle Scholar
  6. 6.
    Katritzky AR, Cundy DJ, Chen J (1994) J Heterocycl Chem 31:271–275CrossRefGoogle Scholar
  7. 7.
    Bednarski MD, Oehler LM, Knox S, Cannizzo L, Warner K, Wardle R, Velarde S, Ning S (March 24, 2009) U.S. Patent US7,507,842 B2Google Scholar
  8. 8.
    Ning S, Bednarski M, Oronsky B, Scicinski J, Saul G, Knox SJ (2012) Cancer Res 72:2600–2608CrossRefGoogle Scholar
  9. 9.
    Straessler NA, Lesley MW, Cannizzo LF (2012) Org Process Res Dev 16:512–517CrossRefGoogle Scholar
  10. 10.
    Kornblum N, Singh HK, Kelly WJ (1983) J Org Chem 48:332–337CrossRefGoogle Scholar
  11. 11.
    Garver LC, Grakauskas V, Baum K (1985) J Org Chem 50:1699–1702CrossRefGoogle Scholar
  12. 12.
    Allen FH (2002) Acta Cryst B58:380–388Google Scholar
  13. 13.
    Hiskey MA, Coburn MD, Mitchell MA, Benicewicz BC (1992) J Heterocycl Chem 29:1855–1856CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2013

Authors and Affiliations

  • Jeffrey R. Deschamps
    • 1
  • Louis F. Cannizzo
    • 2
  • Nicholas A. Straessler
    • 2
  1. 1.Naval Research Laboratory, Code 6930WashingtonUSA
  2. 2.Research and DevelopmentATK Aerospace SystemsBrigham CityUSA

Personalised recommendations