Skip to main content
Log in

Crystal and Molecular Structure of Two Organic Acid–Base Salts from Nicotinamide and Aromatic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two crystalline organic acid–base salts (nicotinamide):(3,5-dinitrosalicylic acid) [(HL+)···(3,5-dns), 3,5-dns = 3,5-dinitrosalicylate] (1), and (nicotinamide):(4-nitro-phthalic acid) [(HL+)···(Hnpa), Hnpa = 4-nitro-hydrogenphthalate] (2) derived from nicotinamide and aromatic carboxylic acids (3,5-dinitrosalicylic acid, and 4-nitro-phthalic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Compound 1 crystallizes in the monoclinic, space group P2(1)/c, with a = 4.7950(3) Å, b = 22.290(2) Å, c = 14.3901(13) Å, β = 104.861(2)º, V = 1486.6(2) Å3, Z = 4. Compound 2 crystallizes in the monoclinic, space group P2(1)/c, with a = 15.0173(14) Å, b = 12.9849(13) Å, c = 7.7281(6) Å, β = 111.6040(10)º, V = 1401.1(2) Å3, Z = 4. Both supramolecular architectures of the compounds 12 involve O–H···O/N–H···O hydrogen bonds as well as other noncovalent association. The role of these noncovalent interactions in the crystal packing is ascertained. For the presence of these weak noncovalent interactions, both compounds displayed 3D framework structure.

Graphical Abstract

Due to the weak interactions, the compound displays 3D framework structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lam CK, Mak TCW (2000) Tetrahedron 56:6657

    CAS  Google Scholar 

  2. Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS (2004) Eur J Inorg Chem 4572

  3. Janiak C (2000) J Chem Soc Dalton Trans 3885

  4. Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049

    CAS  Google Scholar 

  5. Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Cryst B40:159

    CAS  Google Scholar 

  6. Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505

    CAS  Google Scholar 

  7. Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808

    CAS  Google Scholar 

  8. Desiraju GR (2002) Acc Chem Res 35:565

    CAS  Google Scholar 

  9. Braga D, Maini L, Paganelli F, Tagliavini E, Casolari S, Grepioni F (2001) J Organomet Chem 637–639:609

    Google Scholar 

  10. Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM (2008) Inorg Chim Acta 361:173

    CAS  Google Scholar 

  11. Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Eur J Inorg Chem 2238

  12. Maamen M, Gordon DM (1995) Acc Chem Res 28:37 and references therein

    Google Scholar 

  13. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106

    CAS  Google Scholar 

  14. Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247

    CAS  Google Scholar 

  15. Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, Amsterdam

    Google Scholar 

  16. Leiserowitz L (1976) Acta Crystallogr B32:775

    CAS  Google Scholar 

  17. Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654

    CAS  Google Scholar 

  18. Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936

    CAS  Google Scholar 

  19. Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431

    CAS  Google Scholar 

  20. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    CAS  Google Scholar 

  21. Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378

    CAS  Google Scholar 

  22. Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521

    CAS  Google Scholar 

  23. Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547

    CAS  Google Scholar 

  24. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    CAS  Google Scholar 

  25. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    CAS  Google Scholar 

  26. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    CAS  Google Scholar 

  27. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    CAS  Google Scholar 

  28. Men YB, Sun JL, Huang ZT, Zheng QY (2009) CrystEngComm 11:978

    CAS  Google Scholar 

  29. Báthori NB, Lemmerer A, Venter GA, Bourne SA, Caira MR (2011) Cryst Growth Des 11:75

    Google Scholar 

  30. Nicoli S, Bilzi S, Santi P, Caira MR, Li J, Bettini R (2008) J Pharm Sci 97:4830

    CAS  Google Scholar 

  31. Cheney ML, Shan N, Healey ER, Hanna M, Wojtas L, Zaworotko MJ, Sava V, Song S, Sanchez-Ramos JR (2010) Cryst Growth Des 10:394

    CAS  Google Scholar 

  32. Arenas-García JI, Herrera-Ruiz D, Mondragón-Vásquez K, Morales-Rojas H, Höpfl H (2010) Cryst Growth Des 10:3732

    Google Scholar 

  33. Athimoolam S, Natarajan S (2007) Acta Cryst E63:o1811

    Google Scholar 

  34. Athimoolam S, Natarajan S (2007) Acta Cryst E63:o2430

    Google Scholar 

  35. Koman M, Martiska L, Valigura D, Glowiak T (2003) Acta Cryst E59:o441

    Google Scholar 

  36. Zulfiya A, Zhao FH, Che YX (2010) Chin J Struct Chem 29:1185

    CAS  Google Scholar 

  37. Bruker (2004) SMART and SAINT. Bruker AXS, Madison, WI

    Google Scholar 

  38. Sheldrick GM (2000) SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, Madison, WI

  39. Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867

    CAS  Google Scholar 

  40. Smith G, White JM (2001) Aust J Chem 54:97

    CAS  Google Scholar 

  41. Smith G, Wermuth UD, Healy PC, White JM (2011) J Chem Crystallogr 41:1649

    CAS  Google Scholar 

  42. Aakeröy CB, Fasulo ME, Desper J (2007) Mol Pharm 4:317

    Google Scholar 

  43. Orola L, Veidis MV (2009) CrystEngComm 11:415

    CAS  Google Scholar 

  44. González FV, Jain A, Rodríguez S, Sáez JA, Vicent C, Peris G (2010) J Org Chem 75:5888

    Google Scholar 

  45. Ng SW, Naumov P, Drew MGB, Wojciechowski G, Brzezinski B (2001) J Mol Struct 595:29

    CAS  Google Scholar 

  46. Smith G, Wermuth UD, Bott RC, Healy PC, White JM (2002) Aust J Chem 55:349

    CAS  Google Scholar 

  47. Smith G, Lynch DE, Byriel KA, Kennard CHL (1995) Aust J Chem 48:1133

    CAS  Google Scholar 

  48. Borba A, Albrecht M, Gómez-Zavaglia A, Lapinski L, Nowak MJ, Suhm MA, Fausto R (2008) Phys Chem Chem Phys 10:7010

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (Project No. Y201017321) and the financial support of the Zhejiang A & F University Science Foundation (Project No. 2009FK63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Wang, D., Linhe, Q. et al. Crystal and Molecular Structure of Two Organic Acid–Base Salts from Nicotinamide and Aromatic Acids. J Chem Crystallogr 43, 258–265 (2013). https://doi.org/10.1007/s10870-013-0413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0413-2

Keywords

Navigation