Skip to main content
Log in

The Long-Chain N-Alkylpyridinium Cation Modulate Magnetic Behaviors of Metal-bis-1,2-dithiolene Compounds

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two metal-dithiolene compounds with a formula of [Cn-py][Ni(mnt)2] (Cn-py+ represents the 1-alkyl-pyridinium cation, n = 8 (denoted as compound 1), and 9 (denoted as compound 2); mnt2− = maleonitriledithiolate) were synthesized and characterized. The crystal structures determined for two compounds disclosed that these are isostructural with similar cell parameters and packing structures. The cation adopts a bent conformation and the direction of the hydrocarbon chain is approximately parallel to the long molecular axis of the [Ni(mnt)2] anions, and the [Ni(mnt)2] anions and cations of 1 and 2 form segregated irrequidistant columns stacks along the crystallographic c-axis direction. It is worth noting that there existed charge assisted C–H···N interactions between the adjacent anion and cation stacks in crystal of 1 and 2. DSC measurement of 1 and 2 exhibited two exothermic peaks in the first and second cooling process, and showed supercooling behavior and the thermal hysteresis of 18 and 50 K were observed for 1 and 2, respectively. Furthermore, 1 exhibits cold crystallization around 342 K during the second heating scan. Compound 1 shows the magnetic characteristics of a low-dimension antiferromagnetic coupling spin system in the high temperature and spin gap in the low-temperature phase, and compound 2 exhibits weak paramagnetism over the temperature range of 2–400 K.

Graphical Abstract

Compound 1 shows the magnetic characteristics of spin gap in the low-temperature phase and 2 exhibits weak paramagnetism over the temperature range of 2–400 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bray JW, Hart HR, Interrante LV, Jacobs IS, Kasper JS, Watkins GD, Wee H, Bonner JC (1975) Phys Rev Lett 35:744

    Article  CAS  Google Scholar 

  2. Jacobs IS, Bray JW, Hart HR, Interrante LV, Kasper JS, Watkins GD, Prober DE, Bonner JC (1976) Phys Rev B 14:3036

    Article  CAS  Google Scholar 

  3. Andrieux A, Jerome D, Bechgaard KJ (1981) Phys Lett 42:87

    Article  CAS  Google Scholar 

  4. Forro L, Bouffard S, Pougest JPJ (1984) Phys Lett 45:453

    Google Scholar 

  5. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew Chem Int Ed 40:1760

    Article  CAS  Google Scholar 

  6. Clérac R, Miyasaka H, Yamashita M, Coulon CJ (2002) Am Chem Soc 124:12837

    Article  Google Scholar 

  7. Ueda Y (1998) Chem Mater 10:2653

    Article  CAS  Google Scholar 

  8. Azuma M, Hiroi Z, Takano M (1994) Phys Rev Lett 73:3463

    Article  CAS  Google Scholar 

  9. Krogmann K, Hausen HD (1968) Z Anorg Chem 358:67

    Article  CAS  Google Scholar 

  10. Kahn O (1993) Molecular Magnetism. VCH, Weinheim

    Google Scholar 

  11. Ren XM, Nishihara S, Akutagawa T, Noro S, Nakamura T (2006) Inorg Chem 45:2229

    Article  CAS  Google Scholar 

  12. Ren XM, Nishihara S, Akutagawa T, Noro S, Nakamura T, Fujita W, Awaga K (2006) Chem Phys Lett 418:423

    Article  CAS  Google Scholar 

  13. Duan HB, Ren XM, Meng QJ (2010) Coord Chem Rev 254:1509

    Article  CAS  Google Scholar 

  14. Pei WB, Wu JS, Ren XM, Tian ZF, Xie JL (2012) Dalton Trans 41:2667

    Article  CAS  Google Scholar 

  15. Duan HB, Ren XM, Shen LJ, Jin WQ, Meng QJ, Tian ZF, Zhou SM (2011) Dalton Trans 40:3622

    Article  CAS  Google Scholar 

  16. Davison A, Holm HR (1967) Inorg Synth 10:8

    Article  CAS  Google Scholar 

  17. Software packages SMART and SAINT, Siemens Analytical X-ray Instrument Inc., Madison, WI, (1996)

  18. Sheldrick GM (1997) SHELXL-97, Program for Crystal StructureRefinement. Göttingen University, Göttingen

    Google Scholar 

  19. Pei WB, Wu JS, Tian ZF, Ren XM, Song Y (2011) Inorg Chem 50:3970–3980

    Article  CAS  Google Scholar 

  20. Neve F, Crispini A, Armentano S, Francescangeli O (1998) Chem Mater 10:1904

    Article  CAS  Google Scholar 

  21. Paradies HH, Habben F (1993) Acta Crystallogr C49:744

    CAS  Google Scholar 

  22. Vongbupnimit K, Noguchi K, Okuyama K (1995) Acta Crystallogr C51:1940

    CAS  Google Scholar 

  23. Zhang JM, Tsuji H, Noda I, Ozaki Y (2004) Macromolecules 37:6433

    Article  CAS  Google Scholar 

  24. Chung JS, Cebe P (1992) Poly Phy 30:163

    Article  CAS  Google Scholar 

  25. Belana J, Pujal M (1988) Polymer 10:1738

    Article  Google Scholar 

  26. Hall JW, Marsh WE, Weller RR, Hatfield WE (1981) Inorg Chem 20:1033

    Article  CAS  Google Scholar 

  27. van Vleck JH (1932) The Theory of Electric and Magnetic Susceptibilities. London, Oxford

    Google Scholar 

Download references

Acknowledgments

We thank the National Postdoctoral Foundation, Postdoctoral Science Foundation of Jiangsu Province, National Science Foundation of High Learning Institutions of Jiangsu Province and Nature Science Foundation of China for financial support (Grant No. 20110491403, 1002020B, 11KJD150004, 21201103 and 21171097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Bao Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, H., Duan, HB. & Yu, SS. The Long-Chain N-Alkylpyridinium Cation Modulate Magnetic Behaviors of Metal-bis-1,2-dithiolene Compounds. J Chem Crystallogr 43, 250–257 (2013). https://doi.org/10.1007/s10870-013-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0412-3

Keywords

Navigation