Skip to main content
Log in

Syntheses, Structures and Properties of Two Luminous Mercury(II) Bromides Containing Tridentate N-Donor Schiff Bases: Control of Coordination Number and Nuclearity by Varying Ligand Matrices

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Mononuclear [Hg(L1)Br2] (1) and 1D polymer [Hg2(L2)Br4]n (2) [L1 = (N,N-diethyl,N′-(pyridin-2-yl)formylidene)ethane-1,2-diamine and L2 = (N,N-diethyl,N′-(pyridin-2-yl)benzylidene)ethane-1,2-diamine] have been synthesized using appropriate molar ratios of HgBr2 and L1/L2 in methanol–acetonitrile solution mixtures at room temperature. Crystal structures were investigated with the help of single crystal X-ray diffraction data. In 1, the mercury(II) center adopts a distorted square pyramidal geometry bound by three N atoms of L1 and two terminal bromides. Compound 2 forms a 1D chain through Hg–Br–Hg bridges in an infinite fashion connecting two crystallographically independent mercury(II) centers; Hg1 is in a distorted square pyramidal environment coordinated by three N atoms of L2 and two bridging bromides, whereas Hg2 adopts a tetrahedral geometry bound by two terminal and two bridging bromides. 1 and 2 display intraligand 1(π−π*) fluorescence in DMF solutions at room temperature.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Morsali A, Masoomi MY (2009) Coord Chem Rev 253:1882–1905

    Article  CAS  Google Scholar 

  2. Nolte M, Pantenburg I, Meye G (2005) Z Anorg Allg Chem 631:2923–2927

    Article  CAS  Google Scholar 

  3. Bharara MS, Parkin S, Atwood DA (2006) Inorg Chem 45:2112–2118

    Article  CAS  Google Scholar 

  4. Wei KJ, Xie YS, Ni J, Zhang M, Liu QL (2006) Cryst Growth Des 6:1341–1350

    Article  CAS  Google Scholar 

  5. Mahmoudi G, Morsali A, Hunter AD, Zeller M (2007) CrystEngComm 9:704–714

    Article  CAS  Google Scholar 

  6. Hu C, Kalf I, Englert U (2007) CrystEngComm 9:603–610

    Article  CAS  Google Scholar 

  7. Wang XF, Lv Y, Okamura Ta, Kawaguchi H, Wu G, Sun WY, Ueyama N (2007) Cryst Growth Des 7:1125–1133

    Article  CAS  Google Scholar 

  8. Mahmoudi G, Morsali A (2008) Cryst Growth Des 8:391–394

    Article  CAS  Google Scholar 

  9. Mahmoudi G, Morsali A (2008) Polyhedron 27:1070–1078

    Article  CAS  Google Scholar 

  10. Zeng K-J, Xie Y-S, Ni J, Zhang M, Liu Q-L (2006) Cryst Growth Des 6:1341–1350

    Article  Google Scholar 

  11. Yang J, Wu B, Zhuge F, Liang J, Jia C, Wang YY, Tang N, Yang XJ, Shi QZ (2010) Cryst Growth Des 10:2331–2341

    Article  CAS  Google Scholar 

  12. Huber K (1997) In: Wisconsin mercury source book, Section 3, Madison, WI, pp. 67–677

  13. Ko SK, Yang YK, Tac J, Shin I (2006) J Am Chem Soc 128:14150–14155

    Article  CAS  Google Scholar 

  14. Tamayo A, Pedras B, Lodeiro C, Escriche L, Casabo J, Capelo JL, Covelo B, Kiveka R, Sillanpaa R (2007) Inorg Chem 46:7818–7826

    Article  CAS  Google Scholar 

  15. Park S, Lee SY, Lee SS (2010) Inorg Chem 49:1238–1244

    Article  CAS  Google Scholar 

  16. Petty M (2008) In: Molecular electronics: from principles to practice, Wiley, Chichester

  17. Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM (2005) J Am Chem Soc 127:1504–1518

    Article  CAS  Google Scholar 

  18. MacGillivray LR, Papaefstathiou GS, Friscic T, Hamilton TD, Bucar DK, Chu Q, Varshney DB, Georgiev IG (2008) Acc Chem Res 41:280–291

    Article  CAS  Google Scholar 

  19. Vigato PA, Tamburini S, Bertolo L (2007) Coord Chem Rev 251:1311–1492

    Article  CAS  Google Scholar 

  20. Chattopadhyay S, Bhar K, Das S, Satapathi S, Fun HK, Mitra P, Ghosh BK (2010) Polyhedron 29:1667–1675

    Article  CAS  Google Scholar 

  21. Satapathi S, Das S, Bhar K, Kumar RK, Maji TK, Ghosh BK (2011) Polyhedron 30:387–396

    Article  CAS  Google Scholar 

  22. Rahaman SH, Chowdhury H, Bose D, Ghosh R, Hung CH, Ghosh BK (2005) Polyhedron 24:1755–1763

    Article  CAS  Google Scholar 

  23. Englert U (2010) Coord Chem Rev 254:537–554

    Article  CAS  Google Scholar 

  24. Yin Z, Wang W, Du M, Wang X, Gou J (2009) CrystEngComm 11:2441–2446

    Article  CAS  Google Scholar 

  25. Notash B, Safari N, Khavasi HR (2010) Inorg Chem 49:11415–11420

    Article  CAS  Google Scholar 

  26. Mercier N, Poiroux S, Riou A, Batail P (2004) Inorg Chem 43:8361–8366

    Article  CAS  Google Scholar 

  27. Xu Z, Mitzi DB, Medeiros DR (2003) Inorg Chem 42:1400–1402

    Article  CAS  Google Scholar 

  28. Steed JW, Atwood JL (2009) In: Supramolecular chemistry, 2nd edn. John Wiley, New York

    Book  Google Scholar 

  29. SAINT Plus (1998), Data Reduction and Correction Program, v. 6.01, Bruker AXS, Madison

  30. SADABS v.2.01 (1998), Bruker/Siemens area detector absorption correction program, Bruker AXS, Madison

  31. Sheldrick GM (2008) Acta Crystallogr A64:112–122

    CAS  Google Scholar 

  32. Addision AW, Rao TN, Reedijik J, Rijn JV, Verschoor GC (1984) J Chem Soc, Dalton Trans 1349–1356

  33. Nakamoto K (2009) In: Infrared and Raman spectra of inorganic and coordination compounds, Part B, 5th edn, John Wiley, New Jersey

  34. Lever ABP (1984) In:Inorganic electronic spectroscopy, 2nd edn, Elsevier, New York

  35. Wang X-F, Lv Y, Okamura T-a, Kawaguchi H, Wu G, Sun W-Y, Ueyama N (2007) Cryst Growth Des 7:1125–1133

    Article  CAS  Google Scholar 

  36. Liu Y, Yan P-F, Yu Y-H, Hou G-F, Gao J-S, Lu JY (2010) Cryst Growth Des 10:1559–1568

    Article  CAS  Google Scholar 

  37. Zeng F, Ni J, Wang Q, Ding Y, Ng SW, Zhu W, Xie Y (2010) Cryst Growth Des 10:1611–1622

    Article  CAS  Google Scholar 

  38. Lakowicz JR (2006) In: Principles of fluorescence spectroscopy, 3rd edn, Springer, New York

  39. Dutta B, Bag P, Florke U, Nag K (2005) Inorg Chem 44:147–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

BKG thanks the DST and CSIR, New Delhi, India for financial support. SS, SC, SD and KB are grateful to CSIR New Delhi, India for fellowships. The authors also acknowledge the use of DST-funded National Single Crystal X-ray Diffraction Facility at the Department of Inorganic Chemistry, IACS, Kolkata, India for crystallographic studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barindra Kumar Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Satapathi, S., Choubey, S., Das, S. et al. Syntheses, Structures and Properties of Two Luminous Mercury(II) Bromides Containing Tridentate N-Donor Schiff Bases: Control of Coordination Number and Nuclearity by Varying Ligand Matrices. J Chem Crystallogr 42, 1060–1066 (2012). https://doi.org/10.1007/s10870-012-0359-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0359-9

Keywords

Navigation