Skip to main content
Log in

5′-Deoxy-5-Fluorouridine: Characterisation, Crystal Structure and Molecular Conformations Determined from X-Ray Powder Data

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The title compound [systematic name: 1-[(1R,2R,3S,4R)-2,3-dihydroxy-4-methyltetrahydrofuranyl]-5-fluoropyrimidine-2,4(1H,3H)-dione], C9H11FN2O5, is a prodrug of 5-fluorouracil used as a cytostatic in cancer therapy. Its crystal structure was determined from laboratory X-ray powder diffraction data. The compound crystallises in the triclinic space group P1 with two molecules in the asymmetric unit. These symmetrically independent molecules differ in their hydrogen-bond patterns, the pseudorotational angles P of their furanosyl fragments as well as their N-glycosidic torsion angles χ.

Graphical Abstract

The crystal structure of 5′-deoxy-5-fluorouridine, 1-[(1R,2R,3S,4R)-2,3-dihydroxy-4-methyltetrahydrofuranyl]-5-fluoropyrimidine-2,4(1H,3H)-dione], C9H11FN2O5, a prodrug of 5-fluorouracil used as a cytostatic in cancer therapy, was determined from laboratory X-ray powder diffraction data. The compound crystallises in the triclinic space group P1 with two symmetrically independent molecules differing in their hydrogen-bond patterns, the pseudorotational angles P of their furanosyl fragments as well as their N-glycosidic torsion angles χ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Heidelberger C, Chandhuri NK, Dannenberg P, Moore D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J (1957) Nature (London) 179:663

    Article  CAS  Google Scholar 

  2. Duschinsky R, Pleven E, Heidelberger C (1957) J Am Chem Soc 79:4559

    Article  CAS  Google Scholar 

  3. Cook AF (1978) US Patent No. 4 071 680

  4. Cook AF, Holman MJ, Kramer MJ, Trown PW (1979) J Med Chem 22:1330

    Article  CAS  Google Scholar 

  5. Liekens S, Bronckaers A, Pérez-Pérez MJ, Balzarini J (2007) Biochem Pharmacol 74:1555

    Article  CAS  Google Scholar 

  6. Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, Shimma N, Umeda I, Ishitsuka H (1998) Eur J Cancer 34:1274

    Article  CAS  Google Scholar 

  7. Bajetta E, Colleoni M, Bartolomeo MD, Buzzoni R, Bozzetti F, Doci R, Somma L, Cappuzzo F, Stampino CG, Guenzi A, Balant LP, Zilembo N, Leo AD (1995) J Clin Oncol 13:2613

    CAS  Google Scholar 

  8. Armstrong RD, Cadman E (1983) Cancer Res 43:2525

    CAS  Google Scholar 

  9. Allen FH (2002) Acta Cryst B58:380

    CAS  Google Scholar 

  10. Valente EJ, Trager WF, Jensen LH (1975) Acta Cryst B31:954

    CAS  Google Scholar 

  11. Nakajima M, Genda T, Suehira M, Satoh H, Miki A, Hori S, Sawada Y (2010) Cancer Chemother Pharmacol 66:969

    Article  CAS  Google Scholar 

  12. Pan D, Zhang H, Zhang T, Duan X (2010) Chem Eng Sci 65:3762

    Article  CAS  Google Scholar 

  13. Wan L, Cao D, Zeng J, Ziemba A, Pizzorno G (2010) Nucleoside Nucleotide Nucl 29:488

    Article  CAS  Google Scholar 

  14. Rohlíček J, Hušák M, Gavenda A, Jegorov A, Kratochvil B, Fitch A (2009) Acta Cryst E65:1325

    Google Scholar 

  15. Stoe & Cie (2004) WINXPOW. Stoe & Cie GmbH, Darmstadt

    Google Scholar 

  16. O’Neil MJ (2006) The Merck index: an encyclopedia of chemicals, drugs, and biologicals, 14th edn. Merck & Co., Inc., Whitehouse Station, p 582

  17. David WIF, Sivia DS (2001) J Appl Crystallogr 34:318

    Article  CAS  Google Scholar 

  18. Boultif A, Louër D (1991) J Appl Crystallogr 24:987–993

    Article  CAS  Google Scholar 

  19. Hofmann DWM (2002) Acta Cryst B58:489

    CAS  Google Scholar 

  20. Pawley GS (1981) J Appl Crystallogr 14:357

    Article  CAS  Google Scholar 

  21. David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) J Appl Crystallogr 39:910

    Article  CAS  Google Scholar 

  22. Soni SD, Srikrishnan T (2004) Nucleoside Nucleotide Nucl 23:1779

    Article  CAS  Google Scholar 

  23. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) J Appl Cryst 41:466–470

    Google Scholar 

  24. Coelho AA (2007) TOPAS academic user manual. Version 4.1. Coelho Software, Brisbane

    Google Scholar 

  25. Bruno IJ, Cole JC, Kessler M, Luo J, Motherwell WDS, Purkis LH, Smith BR, Taylor R, Cooper RI, Harris SE, Orpen AG (2004) J Chem Inf Comput Sci 44:2133

    CAS  Google Scholar 

  26. March A (1932) Z Krist 81:285

    Google Scholar 

  27. Dollase WA (1986) J Appl Crystallogr 19:267

    Article  CAS  Google Scholar 

  28. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897

    Article  CAS  Google Scholar 

  29. Accelrys (2003) Cerius2, Version 4.9. Accelrys Ltd., Cambridge

  30. Etter MC, MacDonald JC, Bernstein J (1990) Acta Cryst B46:256

    CAS  Google Scholar 

  31. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed 34:1555

    Article  CAS  Google Scholar 

  32. Bernstein J, Shimoni L, Davis RE, Chang N-L (1995) Angew Chem Int Ed 107:1689

    Article  Google Scholar 

  33. Nakai Y, Yamamoto K, Terada K, Uchida T, Shimizu N, Nishigaki S (1982) Chem Pharm Bull 30:2629

    Article  CAS  Google Scholar 

  34. Kemme AA, Bleidelis YY, Lidak MY, Zhuk RA (1983) Zh Org Khim 19:1537

    CAS  Google Scholar 

  35. Harris DR, Macintyre WM (1964) Biophys J 4:203

    Article  CAS  Google Scholar 

  36. Jarmula A, Anulewicz R, Les A, Cyranski MK, Adamowicz L, Bretner M, Felczak K, Kulikowski T, Krygowski TM, Rode W (1998) Biochim Biophys Acta 1382:277

    Article  CAS  Google Scholar 

  37. Hempel A, Camerman N, Grierson J, Mastropaolo D, Camerman A (1999) Acta Cryst C55:632

    CAS  Google Scholar 

  38. McAtee JJ, Schinazi RF, Liotta DC (1998) J Org Chem 63:2161

    Article  CAS  Google Scholar 

  39. Everaert DH, Peeters OM, Blaton NM, De Ranter CJ, Van Aerschot A, Herdewijn P (1992) Acta Cryst C48:590

    CAS  Google Scholar 

  40. IUPAC-IUB Joint Commission on Biochemical Nomenclature (1983) Pure Appl Chem 55:1273

    Article  Google Scholar 

  41. Altona C, Sundaralingam M (1972) J Am Chem Soc 94:8205

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin U. Schmidt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekö, S.L., Urmann, D. & Schmidt, M.U. 5′-Deoxy-5-Fluorouridine: Characterisation, Crystal Structure and Molecular Conformations Determined from X-Ray Powder Data. J Chem Crystallogr 42, 933–940 (2012). https://doi.org/10.1007/s10870-012-0339-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0339-0

Keywords

Navigation