Skip to main content
Log in

Synthesis and Structural Characterization of the Pentanuclear Tantalum Cluster Ta55-N)(μ3-NiPr)22-NiPr)61-NiPr)41-NHiPr)2 from the Reaction of Ta(NMe2)5 and iPrNH2: Unprecedented Formation of a Hinged-Butterfly Cluster Containing an Interstitial Nitride, Imido Groups, and Amido Groups

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The reaction of Ta(NMe2)5 with excess iPrNH2 (20-25 equivalents) at room temperature yields the pentanuclear tantalum cluster Ta55-N)(μ3-NiPr)22-NiPr)61-NiPr)41-NHiPr)2 (1) in 17 % yield. 1 has been characterized by 1H NMR spectroscopy and X-ray diffraction analysis. 1·pentane crystallizes in the monoclinic space group P2(1)/c, a = 21.669(2) Å, b = 12.6412(9) Å, c = 43.451(3) Å, β = 91.535(1)°, V = 11898(2) Å3, Z = 4, and dcalc = 1.961 Mg/m3; R = 0.0723, R w = 0.1599 for 24154 reflections with I > 2σ(I). The structural highlights in 1 include a hinged-butterfly arrangement of tantalum atoms that encapsulate an interstitial μ5-nitride moiety, three different types of imido groups, and one set of amido ligands. Compound 1 represents the first structurally characterized paradigm of a polynuclear cluster whose coordination sphere contains five different types of nitrogen ligands.

Graphical Abstract

The homoleptic amido compound Ta(NMe2)5 reacts with a large excess of iPrNH2 at room temperature to furnish the pentanuclear tantalum cluster Ta55-N)(μ3-NiPr)22-NiPr)61-NiPr)41-NHiPr)2 (1) in 17 % yield. The presence of an interstitial nitride moiety, three different types of imido groups, and one set of amido ligands in cluster 1 has been established by X-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Leskelä M, Ritala M (2003) Angew Chem Int Ed 42:5548

    Article  Google Scholar 

  2. Niinistö J, Kukli K, Heikkilä M, Ritala M, Leskelä M (2009) Adv Eng Mater 11:223

    Article  Google Scholar 

  3. Taeseung K, Zaera F (2011) J Phys Chem C 115:8240

    Article  Google Scholar 

  4. Rayner GB Jr, George SM (2009) J Vac Sci Technol A 27:716

    Article  CAS  Google Scholar 

  5. Huang SH, Pilvi T, Wang X, Leskelä M, Richmond MG (2010) Polyhedron 29:1754

    Article  CAS  Google Scholar 

  6. Huang SH, Wang X, Nesterov V, Hrovat DA, Hall MB, Richmond MG (2011) Organometallics 30:2832

    Article  Google Scholar 

  7. Suh S, Hoffman DM (1996) Inorg Chem 35:5015

    Article  CAS  Google Scholar 

  8. Lehn JSM, van der Heide P, Wang Y, Suh S, Hoffman DM (2004) J Mater Chem 14:3239

    Article  CAS  Google Scholar 

  9. Krinsky JL, Anderson LL, Arnold J, Bergman RG (2008) Inorg Chem 1053

  10. Riley PN, Parker JR, Fanwick PE, Rothwell IP (1999) Organometallics 18:3579

    Article  CAS  Google Scholar 

  11. Shriver DF (1969) The manipulation of air-sensitive compounds. McGraw-Hill, New York

    Google Scholar 

  12. APEX2 Version 2.14, Bruker advanced analytical X-ray systems, Inc. Copyright 2007, Madison

  13. SHELXTL Version 6.14, Bruker advanced analytical X-ray systems, Inc. Copyright 2003, Madison

  14. Spek AL (2006) PLATON: A multipurpose crystallographic tool, Utrecht University, Utrecht

  15. Banaszak Holl MM, Wolczanski PT (1992) J Am Chem Soc 114:3854

    Google Scholar 

  16. Dyson PJ, McIndoe AS (2009) Transition metal carbonyl cluster chemistry. Overseas Publishers Association, Amsterdam

    Google Scholar 

  17. Harris S, Blohm ML, Gladfelter WL (1989) Inorg Chem 28:2290

    Article  CAS  Google Scholar 

  18. Albright TA, Burdett JK, Whangbo MH (1985) Orbital interactions in chemistry. Wiley, New York

    Google Scholar 

  19. Lappert M, Protchenko A, Power P, Seeber A (2009) Metal amide chemistry. Chap. 6. Wiley, New York

    Google Scholar 

  20. Burland MC, Meyer TY, Geib SJ (2003) Acta Crystallogr C 59:m46

    Article  Google Scholar 

  21. Merkoulov A, Schmidt S, Harms K, Sundermeyer J (2005) Z Anorg Allg Chem 631:1810

    Article  CAS  Google Scholar 

  22. Wade K (2009) In: Johnson BFG (ed) Transition metal clusters, Chap. 3. Wiley, New York

  23. Teo BK, Longoni G, Chung FRK (1984) Inorg Chem 23:1251

    Article  CAS  Google Scholar 

  24. Conole G, McPartlin M, Powell HR, Dutton T, Johnson BFG, Lewis J (1989) J Organomet Chem 379:C1

    Article  CAS  Google Scholar 

  25. Braga D, Grepioni F, Sabatino P, Dyson PJ, Johnson BFG, Lewis J, Bailey PJ, Raithby PR, Stalke D (1993) Dalton Trans 985

  26. Blaje AJ, Dyson PJ, Johnson BFG, Braga D, Byrne JJ, Grepioni F (1995) Polyhedron 14:2697

    Article  Google Scholar 

  27. Freeman G, Ingham SL, Johnson BFG, McPartlin M, Scowen IJ (1997) J Chem Soc, Dalton Trans 2705

Download references

Acknowledgments

Financial support from the Robert A. Welch Foundation (Grant B-1093-MGR) and Lam Semiconductor is much appreciated. NSF support of the UNT NMR facility through grant CHE-0840518 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SH., Nesterov, V.N. & Richmond, M.G. Synthesis and Structural Characterization of the Pentanuclear Tantalum Cluster Ta55-N)(μ3-NiPr)22-NiPr)61-NiPr)41-NHiPr)2 from the Reaction of Ta(NMe2)5 and iPrNH2: Unprecedented Formation of a Hinged-Butterfly Cluster Containing an Interstitial Nitride, Imido Groups, and Amido Groups. J Chem Crystallogr 42, 916–922 (2012). https://doi.org/10.1007/s10870-012-0336-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0336-3

Keywords

Navigation