Skip to main content
Log in

Crystal and Molecular Structure of Two Organic Acid–Base Adducts from 2-Aminopyrimidine and Carboxylic Acids

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two crystalline organic acid–base adducts [(L)·(Chda), L = 2-aminopyrimidine, Chda = 1,4-cyclohexanedicarboxylic acid] (1), and (2-aminopyrimidine):(butane-1,2,3,4-tetracarboxylic acid):2H2O [(HL+)2·(Bta2−)·2H2O, Bta2− = dihydrogen butane-1,2,3,4-tetracarboxylate] derived from 2-aminopyrimidine and carboxylic acids (1,4-cyclohexanedicarboxylic acid, and butane-1,2,3,4-tetracarboxylic acid) were prepared and characterized by X-ray diffraction analysis, IR, mp, and elemental analysis. Compound 1 crystallizes in the monoclinic, space group P2(1), with a = 5.2153(5) Å, b = 18.2803(17) Å, c = 7.3409(6) Å, β = 107.9960(10)°, V = 665.62(10) Å3, Z = 2. Compound 2 crystallizes in the triclinic, space group \( P\overline{1} \), with a = 5.2455(7) Å, b = 8.4637(11) Å, c = 12.0299(15) Å, α = 97.9620(10), β = 98.954(2)°, γ = 95.1990(10), V = 519.04(12) Å3, Z = 1. Both supramolecular architectures of the compounds 12 involve O–H···N/N–H···O hydrogen bonds as well as CH–O interactions. The role of these noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, both compounds displayed 3D framework structure.

Graphical Abstract

Due to the weak interactions, the compound displays 3D framework structure.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lam CK, Mak TCW (2000) Tetrahedron 56:6657

    Article  CAS  Google Scholar 

  2. Tanase S, Bouwman E, Long GJ, Shahin AM, Mills AM, Jan Reedijk ALS (2004) Eur J Inorg Chem 4572. doi:10.1002/ejic.200400609

  3. Janiak C, J Chem Soc Dalton Trans (2000) 3885. doi:10.1039/B003010O

  4. Takahashi O, Kohno Y, Nishio M (2010) Chem Rev 110:6049

    Article  CAS  Google Scholar 

  5. Berkovitch-Yellin Z, Leiserowitz L (1984) Acta Cryst B40:159

    CAS  Google Scholar 

  6. Cho KH, No KT, Scheraga HA (2000) J Phys Chem A 104:6505

    Article  CAS  Google Scholar 

  7. Koch W, Frenking G, Gauss J, Cremer D (1986) J Am Chem Soc 108:5808

    Article  CAS  Google Scholar 

  8. Desiraju GR (2002) Acc Chem Res 35:565

    Article  CAS  Google Scholar 

  9. Braga D, Maini L, Paganelli F, Tagliavini E, Casolari S, Grepioni F (2001) J Organomet Chem 637–639:609

    Article  Google Scholar 

  10. Liu JQ, Wang YY, Ma LF, Zhang WH, Zeng XR, Zhong F, Shi QZ, Peng SM (2008) Inorg Chim Acta 361:173

    Article  CAS  Google Scholar 

  11. Biswas C, Drew MGB, Escudero D, Frontera A, Ghosh A (2009) Eur J Inorg Chem 15:2238

    Article  Google Scholar 

  12. Maamen M, Gordon DM (1995) Acc Chem Res 28:37 (references therein)

    Google Scholar 

  13. Weyna DR, Shattock T, Vishweshwar P, Zaworotko MJ (2009) Cryst Growth Des 9:1106

    Article  CAS  Google Scholar 

  14. Du M, Zhang ZH, Zhao XJ (2005) Cryst Growth Des 5:1247

    Article  CAS  Google Scholar 

  15. Desiraju GR (1989) Crystal engineering, the design of organic solids. Elsevier, Amsterdam

  16. Leiserowitz L (1976) Acta Crystallogr B32:775

    CAS  Google Scholar 

  17. Kolotuchin SV, Fenlon EE, Wilson SR, Loweth CJ, Zimmerman SC (1995) Angew Chem Int Ed Engl 34:2654

    Article  CAS  Google Scholar 

  18. Kuduva SS, Craig DC, Nangia A, Desiraju GR (1999) J Am Chem Soc 121:1936

    Article  CAS  Google Scholar 

  19. Bernstein J, Etter MC, Leiserowitz L (1994) Struct Correl 2:431

    Article  CAS  Google Scholar 

  20. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  21. Reddy LS, Bethune SJ, Kampf JW, Rodríguez-Hornedo N (2009) Cryst Growth Des 9:378

    Article  CAS  Google Scholar 

  22. Lee IS, Shin DM, Chung YK (2003) Cryst Growth Des 3:521

    Article  CAS  Google Scholar 

  23. Bhogala BR, Nangia A (2003) Cryst Growth Des 3:547

    Article  CAS  Google Scholar 

  24. MacDonald JC, Dorrestein PC, Pilley MM (2001) Cryst Growth Des 1:29

    Article  CAS  Google Scholar 

  25. Highfill ML, Chandrasekaran A, Lynch DE, Hamilton DG (2002) Cryst Growth Des 2:15

    Article  CAS  Google Scholar 

  26. Vishweshwar P, Nangia A, Lynch VM (2002) J Org Chem 67:556

    Article  CAS  Google Scholar 

  27. Nichol GS, Clegg W (2009) Cryst Growth Des 9:1844

    Article  CAS  Google Scholar 

  28. Men YB, Sun JL, Huang ZT, Zheng QY (2009) Cryst Eng Commun 11:978

    CAS  Google Scholar 

  29. Lynch DE, Jones GD (2004) Acta Cryst B60:748 (the references cited therein)

  30. Skovsgaard S, Bond AD (2009) Cryst Eng Commun 11:444

    CAS  Google Scholar 

  31. Goswami S, Mahapatra AK, Nigam GD, Chinnakali K, Fun HK, Razak IA (1999) Acta Cryst C55:583

    CAS  Google Scholar 

  32. Byriel KA, Kennard CHL, Lynch DE, Smith G, Thompson JG (1992) Aust J Chem 45:969

    Article  CAS  Google Scholar 

  33. Alshahateet SF (2011) J Chem Crystallogr 41:276

    Article  CAS  Google Scholar 

  34. Smith G, Gentner JM, Lynch DE, Byriel KA, Kennard CHL (1995) Aust J Chem 48:1151

    Article  CAS  Google Scholar 

  35. Chinnakali K, Fun HK, Goswami S, Mahapatra AK, Nigam GD (1999) Acta Cryst C55:399

    CAS  Google Scholar 

  36. Jin SW, Zhang WB, Wang DQ, Gao HF, Zhou JZ, Chen RP, Xu XL (2010) J Chem Crystallogr 40:87

    Article  CAS  Google Scholar 

  37. Jin SW, Wang DQ, Jin ZJ, Wang LQ (2009) Polish J Chem 83:1937

    CAS  Google Scholar 

  38. Bruker (2004) SMART and SAINT. Bruker AXS, Madison

  39. Sheldrick GM (2000) SHELXTL, structure determination software suite, version 6.14. Bruker AXS, Madison

  40. Lynch DE, Thomas LC, Smith G, Byriel KA, Kennard CHL (1998) Aust J Chem 51:867

    Article  CAS  Google Scholar 

  41. Smith G, White JM (2001) Aust J Chem 54:97

    Article  CAS  Google Scholar 

  42. Sieroń L (2007) Acta Cryst E63:m2336

    Google Scholar 

  43. Scheinbeim J, Schempp E (1976) Acta Cryst B32:607

    CAS  Google Scholar 

  44. Czupiński O, Wojtaś M, Ciunik Z, Jakubas R (2006) Solid State Sci 8:86

    Article  Google Scholar 

  45. Domenicano A, Vaciago A, Coulson CA (1975) Acta Cryst B31:221

    CAS  Google Scholar 

  46. Najafpour MM, Holynska M, Lis T (2008) Acta Cryst E64:o985

    CAS  Google Scholar 

  47. Barnes HA, Barnes JC (1996) Acta Cryst C52:731

    CAS  Google Scholar 

  48. McKee V, Najafpour MM (2007) Acta Cryst E63:o741

    CAS  Google Scholar 

  49. Etter MC, MacDonald JC, Bernstein J (1990) Acta Cryst B46:256

    CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of the Education Office Foundation of Zhejiang Province (project no. Y201017321) and the financial support of the Zhejiang A & F University Science Foundation (project no. 2009FK63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Wang, D., Liang, S. et al. Crystal and Molecular Structure of Two Organic Acid–Base Adducts from 2-Aminopyrimidine and Carboxylic Acids. J Chem Crystallogr 42, 759–766 (2012). https://doi.org/10.1007/s10870-012-0313-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-012-0313-x

Keywords

Navigation