Skip to main content
Log in

Hydrogen Bonded Supramolecular Network from a Mixed Valence Cobalt System: Synthesis and Crystal Structure of [Co(H2O)6][Co(pydc)2(en)]2·14H2O

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The [Co(H2O)6][Co(pydc)2(en)]2·14H2O (1) compound (H2pydc = Pyridine-2,3-dicarboxylic acid and en = ethylenediamine) was synthesized and characterized by elemental analysis, magnetic and spectroscopic measurements (UV–Vis and IR spectra) and single crystal X-ray diffraction technique. There are two coordination spheres with different charges inside this aqueous compound of ionic character. The cationic part is composed of Co(II) encircled by six aqua ligand. Whereas the anionic part contains two anions complex unit each with −1 charge and have Co(III) ions in the centre. As a result different coordination spheres have cobalt ions with different states. The crystallographic analysis revealed that 1 consists of both discrete one-cationic and two-anionic entities, [Co(H2O)6]2+ and [Co(pydc)2(en)] 2 and fourteen crystal water molecules. Two water molecules within the water cluster act as hydrogen-bonding acceptors, whereas one water molecule acts as a hydrogen-bonding donor to form a discrete water trimer. These water molecules have stabilized the crystal structure by strong hydrogen bonding interactions.

Graphical Abstract

The [Co(H2O)6][Co(pydc)2(en)]2·14H2O (1) was synthesized and characterized by elemental analysis, magnetic and spectroscopic measurements and single crystal X-ray diffraction technique. There are two coordination spheres with different charges inside this aqueous compound of ionic character. The compound presented in this work corresponds to a class I compound according to Robin–Day classificationThe [Co(H2O)6][Co(pydc)2(en)]2·14H2O (1) was synthesized and characterized by elemental analysis, magnetic and spectroscopic measurements and single crystal X-ray diffraction technique. There are two coordination spheres with different charges inside this aqueous compound of ionic character. The compound presented in this work corresponds to a class I compound according to Robin–Day classificationThe [Co(H2O)6][Co(pydc)2(en)]2·14H2O (1) was synthesized and characterized by elemental analysis, magnetic and spectroscopic measurements and single crystal X-ray diffraction technique. There are two coordination spheres with different charges inside this aqueous compound of ionic character. The compound presented in this work corresponds to a class I compound according to Robin–Day classification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pawlowski V, Kunkely H, Zabel M, Vogler A (2004) Inorg Chim Acta 357:824

    Article  CAS  Google Scholar 

  2. Dziobkowski CT, Wrobleski JT, Brown DB (1981) Inorg Chem 20:679

    Article  CAS  Google Scholar 

  3. Lynch MW, Valentine M, Hendrickson DN (1982) J Am Chem Soc 104:6982

    Article  CAS  Google Scholar 

  4. Rocha RC, Rein FN, Jude H, Shreve AP, Concepcion JJ, Meyer TJ (2008) Angew Chem 120:513

    Article  Google Scholar 

  5. Das A, Bajaj HC (1997) Polyhedron 16:1023

    Article  CAS  Google Scholar 

  6. Hu D, Che Y, Chen P, Zheng J (2006) J Coord Chem 60:1959

    Article  Google Scholar 

  7. Xiao FP, Yuz BB, Liao ZR (2008) J Coord Chem 61:384

    Article  CAS  Google Scholar 

  8. Meienberger MD, Morgenstern B, Stucky S, Hegetschweiler K (2008) Eur J Inorg Chem 2008:129

    Article  Google Scholar 

  9. Chen CY, Zhou ZH, Chen HB, Huang PQ, Tsai KR, Chow YL (2008) Inorg Chem 47:8714

    Article  CAS  Google Scholar 

  10. Welby J, Rusere LN, Tanski JM, Tyler LA (2009) Inorg Chim Acta 362:1405

    Article  CAS  Google Scholar 

  11. Oka Y, Inoue K (2004) Chem Lett 33:402

    Article  CAS  Google Scholar 

  12. Pantazis DA, McGrady JE (2006) J Am Chem Soc 128:4128

    Article  CAS  Google Scholar 

  13. Pradeep CP, Zacharias PS, Das SK (2007) Eur J Inorg Chem 2007:5377

    Article  Google Scholar 

  14. Rat M, Sousa RA, Tomas A, Frapart Y, Tuchagues JP, Artaud I (2003) Eur J Inorg Chem 2003:759

    Article  Google Scholar 

  15. Weberski MP Jr, McLauchlan CC (2007) Acta Crystallog E63:m1171

    CAS  Google Scholar 

  16. Chattopadhyay S, Drew MGB, Ghosh A (2008) Eur J Inorg Chem 2008:1693

    Article  Google Scholar 

  17. Fukuhara C, Asato E, Shimoji T, Katsura K (1987) J Chem Soc Dalton Trans 1305

  18. Halbauer K, Görls H, Imhof W (2008) Inorg Chem Commun 11:1177

    Article  CAS  Google Scholar 

  19. Knight DA, Deschamps JR, Butcher RJ, Simmers C, Chang EL (2008) Polyhedron 27:1795

    Article  CAS  Google Scholar 

  20. Pal S, Barik AK, Gupta S, Roy S, Mandal TN, Hazra A, El Fallah MS, Butcher RJ, Peng SM, Lee GH, Kar SK (2008) Polyhedron 27:357

    Article  CAS  Google Scholar 

  21. Venkatakrishnan TS, Imaz I, Sutter JP (2008) Inorg Chim Acta 361:3710

    Article  CAS  Google Scholar 

  22. Yang C, Wang QL, Tang GT, Wang C, Yan SP, Liao DZ (2010) J Coord Chem 63:505

    Article  CAS  Google Scholar 

  23. Stamatatos TC, Boudalis AK, Pringouri KV, Raptopoulou CP, Terzis A, Wolowska J, McInnes EJL, Perlepes SP (2007) Eur J Inorg Chem 2007:5098

    Article  Google Scholar 

  24. He X, Lu CZ, Wu CD (2006) J Coord Chem 59:977

    Article  CAS  Google Scholar 

  25. Robin M, Day P (1967) Adv Inorg Radiochem 10:247

    Article  CAS  Google Scholar 

  26. Chiu KY, Su TH, Huang CW, Liou GS, Cheng SH (2005) J Electroanal Chem 578:283

    Article  CAS  Google Scholar 

  27. Trivedi M, Pandey DS, Rath NP (2009) Inorg Chim Acta 362:284

    Article  CAS  Google Scholar 

  28. Wei W, Jiang F, Wua M, Gao Q, Zhang Q, Yan C, Li N, Hong M (2009) Inorg Chem Commun 12:290

    Article  CAS  Google Scholar 

  29. Zhao XJ, Li J, Ding B, Wang XG, Yang EC (2007) Inorg Chem Commun 10:605

    Article  CAS  Google Scholar 

  30. Ghosh SK, Bharadwaj PK (2006) Inorg Chim Acta 359:1685

    Article  CAS  Google Scholar 

  31. Goher MAS, Youssef AA, Mautner FA (2006) Polyhedron 25:1531

    Article  CAS  Google Scholar 

  32. Baruah AM, Karmakar A, Baruah JB (2007) Polyhedron 26:4518

    Article  CAS  Google Scholar 

  33. Lin YY, Chen GH, Yu YP, Liu BX (2007) Acta Crystallogr E63:m2178

    CAS  Google Scholar 

  34. Okabe N, Miura J, Shimosaki A (1996) Acta Crystallogr C52:1610

    CAS  Google Scholar 

  35. Zhang HT, You XZ (2003) Acta Crystallogr C59:m313

    CAS  Google Scholar 

  36. Zhang XM, Fang RQ, Wu HS, Ng SW (2003) Acta Crystallogr E59:m1143

    CAS  Google Scholar 

  37. Goher MAS, Youssef AA, Zhou ZY, Mak TCW (1993) Polyhedron 12:1871

    Article  CAS  Google Scholar 

  38. Lazarescu A, Shova S, Bartolome J, Alonso P, Arauzo A, Balu AM, Simonov YA, Gdaniec M, Turta C, Filotih G, Luque R (2011) Dalton Trans 40:463

    Article  CAS  Google Scholar 

  39. Dockal ER, Everhart ER, Gould ES (1971) J Am Chem Soc 93:5661

    Article  CAS  Google Scholar 

  40. Mahata P, Madras G, Natarajan S (2007) Catal Lett 115:27

    Article  CAS  Google Scholar 

  41. Stoe & Cie (2002). X-Area (Version 1.18) and X-Red32 (Version 1.04). Stoe& Cie, Darmstadt, Germany (2001)

  42. Sheldrick GM, SHELXS97 and SHELXL97 (1997) Program for the Refinement of Crystal Structures, University of Göttingen, Germany

  43. Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, Van de Streek J (2006) J Appl Crystallogr 39:453

    Article  CAS  Google Scholar 

  44. Shriver DF, Atkins PW, Langford CH (1994) Inorganic Chemistry. Oxford University, Oxford

    Google Scholar 

  45. Puntus L, Zolin V, Kudryashova V (2004) J Alloys Comp 374:330

    Article  CAS  Google Scholar 

  46. Vargová Z, Zeleòák V, Cisaøová I, Györyová K (2004) Thermochim Acta 423:149

    Article  Google Scholar 

  47. Nakamoto K (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds, 5th edn. Wiley Interscience, New York

    Google Scholar 

  48. Mao L, Wang Y, Qi Y, Cao M, Hu CJ (2004) Mol Struct 688:197

    Article  CAS  Google Scholar 

  49. Uçar İ, Karabulut B, Bulut A, Büyükgüngör O (2007) J Mol Struct 834:336

    Article  Google Scholar 

  50. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  51. Das MC, Maity SB, Bharadway PK (2009) Curr Opin Solid State Mater Sci 13:76

    Article  CAS  Google Scholar 

  52. Teresa HG, Hura G (2002) Chem Rev 102:2651

    Article  Google Scholar 

  53. Mascal M, Infantes L, Chisolm J (2006) Angew Chem 45:32

    Article  CAS  Google Scholar 

  54. Infantes L, Motherwell S (2002) Cyrst Eng Comm 4:454

    CAS  Google Scholar 

Download references

Acknowledgments

This study is part of a research project 209T119. We thank TÜBİTAK for the financial support given to the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alper Tolga Çolak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çolak, A.T., Pamuk, G., Yeşilel, O.Z. et al. Hydrogen Bonded Supramolecular Network from a Mixed Valence Cobalt System: Synthesis and Crystal Structure of [Co(H2O)6][Co(pydc)2(en)]2·14H2O. J Chem Crystallogr 42, 76–82 (2012). https://doi.org/10.1007/s10870-011-0206-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0206-4

Keywords

Navigation