Skip to main content

Synthesis, Characterization and Cytotoxic Activity of S-Benzyldithiocarbazate Schiff Bases Derived from 5-Fluoroisatin, 5-Chloroisatin, 5-Bromoisatin and Their Crystal Structures

Abstract

Schiff bases were prepared from S-benzyldithiocarbazate with 5-fluro-, 5-chloro- and 5-bromoisatin. All are potential tridentate nitrogen, oxygen, sulfur donors. They were found to be selectively active against MCF-7 cell line (Human non-metastatic mammary gland adenocarcinoma cell line). The bromide and fluoride compounds were the most active with IC50 values of 6.40 μM (2.6 μg/mL) and 9.26 μM (3.2 μg/mL) respectively while the chloride derivative was weakly active with an IC50 value of 38.69 μM (14.0 μg/mL). The cytotoxic activity of the halo substituted isatins against the breast cancer cell lines tested is in the order of Br > F > Cl. Planarity of the isatin ring in the Schiff bases can be arranged in the following order SB5FISA > SB5ClISA > SB5BrISA while the perpendicularity of the benzyl ring towards the dithiocarbazate plane can be ordered as follows, SB5FISA > SB5BrISA > SB5ClISA.

Graphical abstract

Schiff bases were prepared from S-benzyldithiocarbazate with 5-fluro-, 5-chloro- and 5-bromoisatin. They were found to be selectively active against MCF-7 cell line (Human non-metastatic mammary gland adenocarcinoma cell line) with the bromide compound was the most active with IC50 value of 6.40 μM (2.6 μg/mL).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Ali MA, Livingstone SE (1974) Coord Rev 13:101

    Article  CAS  Google Scholar 

  2. Battistoni C, Mattogno G, Monaci A, Trali F (1971) J lnorg Nucl Chem 33:3815

    Article  CAS  Google Scholar 

  3. Iskander MF, El Syed L (1971) J Inorg Nucl Chem 33:4253

    Article  CAS  Google Scholar 

  4. Glover V, Halket JM, Watkins PJ, Clow A, Goddwin BL, Sandler MJ (1988) Neurochemistry 51:656

    Article  CAS  Google Scholar 

  5. Bhattacharya SK, Glover V, McIntyre I, Oxenkrug G, Sandler M (1982) Neurosci Lett 92(2):218

    Article  Google Scholar 

  6. Bhattacharya SK, Mitra SK, Acharya SB (1991) J Psychopharmacol 5:202

    Article  CAS  Google Scholar 

  7. Gil-Turners MS, Hay ME, Fenical W (1989) Science 246:116

    Article  Google Scholar 

  8. Pandeya SN, Sriram D (1998) Acta Pharm Turc 40:33

    CAS  Google Scholar 

  9. Sarangapani M, Reddy VM (1994) Indian J Pharm Sci 56:174

    Google Scholar 

  10. Pignatello R, Panico A, Mazzane P, Pinizzotto MR, Garozzo A, Fumeri PM (1994) Eur J Med Chem 29:781

    Article  CAS  Google Scholar 

  11. Pandeya SN, Sriram D, Nath G, De Clercq E (1999) Indian J Pharm Sci 61:358

    Google Scholar 

  12. Pandeya SN, Sriram D, Nath G, De Clercq E (1999) Sci Pharm 67:103

    CAS  Google Scholar 

  13. Pandeya SN, Sriram D, Nath G, De Clercq E (1999) Pharm Acta Helv 74:11

    Article  CAS  Google Scholar 

  14. Varma RS, Nobles WL (1967) J Med Chem 10:972

    Article  CAS  Google Scholar 

  15. Pandeya SN, Yogeswari P, Sriram D, De Clercq E, Pannecouque C, Witvrouw M (1999) Chemotherapy 45:192

    Article  CAS  Google Scholar 

  16. Pandeya SN, Sriram D, Nath G, De Clercq E (2000) Eur J Med Chem 35:249

    Article  CAS  Google Scholar 

  17. Pandeya SN, Sriram D, Nath G, De Clercq E (2000) Drug Res 50:55

    CAS  Google Scholar 

  18. Imam SA, Varma RS (1975) Experientia 31(11):1287

    Article  CAS  Google Scholar 

  19. Varma RS, Khan IA (1977) Polish J Pharmacol Pharm 29(5):549

    CAS  Google Scholar 

  20. Sarciron SE, Audin P, Delebre I, Gabrion C, Petavy AF, Paris J (1983) J Pharm Sci 82:605

    Article  Google Scholar 

  21. Et-Sawi EA, Mostafa TB, Mostafa BB (1998) J Egypt Soc Parasitol 28:481

    Google Scholar 

  22. Chi KW, Furin GG, Bagrynskay IY, Gailov YV (2000) J Fluorine Chem 104(2):263

    Article  CAS  Google Scholar 

  23. Prenen H, Cools J, Mentens N, Folens C, Sciot R, Schoffski P, Van Oosterom A, Marynen P, Debiec-Rychter M (2006) Clin Cancer Res 8:2622

    Article  Google Scholar 

  24. Motzer RJ, Michaelson MD, Redman BG, Hudes GR, Wilding G, Figlin RA, Ginsberg MS, Kim ST, Baum CM, DePrimo SE, Li JZ, Bello CL, Theuer CP, George DJ, Rini B (2006) J Clin Oncol 1:16

    Article  Google Scholar 

  25. Otwinowski Z, Minor W, Carter iCW, Sweet RM (eds) (1997) Processing of X-ray diffraction data collected in oscillation mode, methods enzymology, vol 276. Academic Press, New York

    Google Scholar 

  26. Altomare A, Cascarano G, Giacovazzo G, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Cryst 27:435

    Google Scholar 

  27. Watkin DJ, Prout CK, Carruthers JR, Betteridge PW. (1996) CRYSTALS, Issue 10 edn. Chemical Crystallography Laboratory, University of Oxford

  28. Mosmann T (1983) J Immunol Methods 65:55

    Article  CAS  Google Scholar 

  29. Das M, Livingstone SE (1976) Inorg Chim Acta 19:5

    Article  CAS  Google Scholar 

  30. Ali MA, Mirza AH, Hamid MHSA, Bernhardt PV (2005) Polyhedron 24(3):383

    Article  Google Scholar 

  31. Pavia DL, Lampman GM, Kriz GS (2001) Introduction to organic spectroscopy. In: 1H nuclear magnetic resonance spectroscopy, 3rd edn. Brooks Cole Publishers, Philadelphia, pp 139

  32. Akinchan NT, Drożdżewski PM, Holzer W (2002) J Mol Struct 641:17

    Article  CAS  Google Scholar 

  33. Langkilde A, Madsen D, Larsen S (2004) Acta Crystallogr Sect B 60:502

    Article  Google Scholar 

  34. Tarafder MTH, Khoo TJ, Crouse KA, Ali AM, Yamin BM, Fun HK (2002) Polyhedron 21:2691

    Article  CAS  Google Scholar 

  35. Raj SSS, Yamin BM, Yussof YA, Tarafder MTH, Fun HK, Crouse KA (2000) Acta Crystallogr Sect C 56:1236

    Article  Google Scholar 

  36. How FNF, Crouse KA, Tahir MIM, Tarafder MTH, Cowley AR (2008) Polyhedron 27:3325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Department of Chemistry, Universiti Putra Malaysia for the provision of laboratory facilities. This work was funded by a grant from the Ministry of Science, Technology and Innovation under the Intensification of Research in Priority Area program (Grant no. 09-02-04-0755-EA001). Support from Universiti Teknologi MARA (UiTM) and the Ministry of Higher Education (MOHE) for MAFA Manan is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Abdul Fatah Abdul Manan.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Manan, M.A.F.A., Crouse, K.A., Tahir, M.I.M. et al. Synthesis, Characterization and Cytotoxic Activity of S-Benzyldithiocarbazate Schiff Bases Derived from 5-Fluoroisatin, 5-Chloroisatin, 5-Bromoisatin and Their Crystal Structures. J Chem Crystallogr 41, 1630 (2011). https://doi.org/10.1007/s10870-011-0151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10870-011-0151-2

Keywords

  • Dithiocarbazate
  • Schiff base
  • Isatin
  • MCF-7
  • Structure