Skip to main content

Advertisement

Log in

Structural, Spectroscopic and Thermal Analysis of Cocrystals of Carbamazepine and Piracetam with Hydroquinone

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Cocrystals of two important active pharmaceutical ingredients, carbamazepine and piracetam, with hydroquinone are reported. Cocrystal formation between the selected APIs and hydroquinone is investigated with the aid of solid-state grinding methods. Both the crystal structures belong to the triclinic, \(P \bar{1}\) space group, with the cocrystal involving carbamazepine and hydroquinone having the unit cell parameters a = 6.9725 (14) Å, b = 8.8175 (18) Å, c = 15.083 (3) Å, α = 106.96 (3)°, β = 92.16 (3)°, γ = 103.23 (3)°, V = 858.0 (4) Å3 and Z = 2; and the cocrystal involving piracetam and hydroquinone has the unit cell parameters a = 6.4909 (13) Å, b = 6.5410 (13) Å, c = 11.612 (2) Å, α = 103.92 (3)°, β = 104.53 (3)°, γ = 91.06 (3)°, V = 461.59 (18) Å3 and Z = 2. Analysis of the cocrystals revealed that they are sustained by an alcohol–carboxamide heterosynthon. In addition, the cocrystal of carbamazepine and hydroquinone features an amide–alcohol heterosynthon and an alcohol–alcohol homosynthon. The cocrystal of piracetam and hydroquinone features an amide–amide dimer synthon. Cocrystal formation was evidenced from the shifts in the vibrational frequencies corresponding to the functional groups present on the cocrystal components.

Graphical Abstract

Cocrystals of carbamazepine and piracetam with hydroquinone were prepared, and characterized by FT-IR spectroscopy, thermal analysis, and powder and single-crystal X-ray diffraction. Analysis of the crystal structures revealed that both the cocrystals are sustained by alcohol–amide heterosynthon and the cocrystal involving piracetam and hydroquinone features an amide–amide dimer synthon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Desiraju GR (2001) Nature (London) 412:397–400

    Google Scholar 

  2. Desiraju GR (1989) Crystal engineering: the design of organic solids, materials science monographs 54. Elsevier, Amsterdam

    Google Scholar 

  3. Almarsson Ö, Zaworotko MJ (2004) Chem Commun 17:1889–1896

    Article  Google Scholar 

  4. Schultheiss N, Newman A (2009) Cryst Growth Des 9:2950

    Article  CAS  Google Scholar 

  5. Palin DE, Powell HM (1947) J Chem Soc 208–21

  6. Powell HM (1948) J Chem Soc 16:61–73

    Article  CAS  Google Scholar 

  7. Powell HM (1973) J Chem Soc 61

  8. Naoki M, Yoshizawa T, Fukushima N, Ogiso M, Yoshino M (1999) J Phys Chem B 103:6309

    Article  CAS  Google Scholar 

  9. Ermer O (1991) Helv Chim Acta 74:1339

    Article  CAS  Google Scholar 

  10. Ermer O, Röbke C (1993) J Am Chem Soc 115:10077

    Article  CAS  Google Scholar 

  11. Hermansson K (2000) J Chem Phys 112:835

    Article  CAS  Google Scholar 

  12. Wöhler F (1844) Ann Chem Pharm 51:153

    Google Scholar 

  13. Kobayashi Y, Ito S, Itai S, Yamamoto K (2000) Int J Pharm 193:137

    Article  CAS  Google Scholar 

  14. Himes VL, Mighell AD, De Camp WH (1981) Acta Crystallogr B37:2242

    CAS  Google Scholar 

  15. Lowes MMJ, Cairo MR, Lotter AP, Van der Watt JG (1987) J Pharm Sci 76:744

    Article  CAS  Google Scholar 

  16. Lisgarten JN, Palmer RA, Saldanha JW (1989) J Crystallogr Spectrosc Res 19:641

    Article  CAS  Google Scholar 

  17. Rustichelli C, Gamberini G, Ferioli V, Gamberini MC, Ficarra R, Tommasini S (2000) J Pharm Biomed Anal 23:41

    Article  CAS  Google Scholar 

  18. Lang M, Kampf J, Matzger MJ (2002) J Pharm Sci 91:1186

    Article  CAS  Google Scholar 

  19. Chang CH, Yang DSC, Yoo CS, Wang BL, Pletcher J (1981) Acta Crystallogr A37:C71

    Google Scholar 

  20. Reck G, Dietz G (1986) Cryst Res Technol 21:1463

    Article  CAS  Google Scholar 

  21. Fleischman SG, Kuduva SS, McMahon JA, Moulton B, Walsh RDB, Rodriguez-Hornedo N, Zaworotko MJ (2003) Cryst Growth Des 3:909

    Article  CAS  Google Scholar 

  22. McMahon JA, Bis JA, Vishweshwar P, Shattock TR, McLaughlin OL, Zaworotko MJ (2005) Z Kristallogr 220:340

    Article  CAS  Google Scholar 

  23. Childs SL, Rodríguez-Hornedo N, Reddy LS, Jayasankar A, Maheshwari C, McCausland L, Shipplett R, Stahly BC (2008) CrystEngComm 10:856

    Article  CAS  Google Scholar 

  24. Hickey MB, Peterson ML, Scoppettuolo LA, Morrisette SL, Vetter A, Guzmán H, Remenar JF, Zhang Z, Tawa MD, Haley S, Zaworotko MJ, Almarsson Ö (2007) Eur J Pharm Biopharm 67:112

    Article  CAS  Google Scholar 

  25. The Merck Index, 13th edn; Merck & Co., Inc.: Whitehouse Station, NJ, 2001; p 1342, and UCB homepage: http://www.ucbpharma.com/about_ucb

  26. Fabbiani FP, Allan DR, David WIF, Davidson AJ, Lennie AR, Parsons S, Pulham CR, Warren JE (2007) Cryst Growth Des 7:1115

    Article  CAS  Google Scholar 

  27. Viertelhaus M, Hilfiker R, Blatter F (2009) Cryst Growth Des 9:2220

    Article  CAS  Google Scholar 

  28. Liao X, Gautam M, Grill A, Zhu HJ (2010) J Pharm Sci 99:246

    Article  CAS  Google Scholar 

  29. Sheldrick GM (1997) SHELXS-97 and SHELXL-97, Progams for the solution and refinement of crystal structures. University of Göttingen, Göttingen

    Google Scholar 

  30. Trask AV, van de Streek J, Motherwell WDS, Jones W (2005) Cryst Growth Des 5:2233

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Srinivasulu Aitipamula or Reginald B. H. Tan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aitipamula, S., Chow, P.S. & Tan, R.B.H. Structural, Spectroscopic and Thermal Analysis of Cocrystals of Carbamazepine and Piracetam with Hydroquinone. J Chem Crystallogr 41, 1604–1611 (2011). https://doi.org/10.1007/s10870-011-0147-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0147-y

Keywords

Navigation