Skip to main content
Log in

Hydrogen Bonded 3D Supramolecular Architectures of Three Saccharinate Salts

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Three saccharinate salts (2-aminopyrimidine): (saccharin) (1), (4-phenylthiazol-2-amine): (saccharin) (2), and (2-methylquinoline): (saccharin) (3) were prepared and structurally characterized by X-ray crystallography. Salt 1 crystallizes in the monoclinic, space group P2(1)/c, with a = 7.1782(9) Å, b = 13.5105(16) Å, c = 12.2251(12) Å, β = 93.3410(10)°, V = 1183.6(2) Å3, Z = 4. Compound 2 crystallizes in the triclinic, space group P-1, with a = 7.4584(7) Å, b = 8.6930(9) Å, c = 12.9179(14) Å, α = 108.952(2)°, β = 91.7510(10)°, γ = 97.2280(10)°, V = 783.57(14) Å3, Z = 2. Compound 3 crystallizes in the monoclinic, space group P2(1)/c, with a = 7.781(8) Å, b = 19.4209(19) Å, c = 10.9719(12) Å, β = 107.7390(10)°, V = 1579.2(16) Å3, Z = 4. The different hydrogen bonding interaction modes of the saccharinate anions and the cations lead to 3D network structure, 3D staircase structure, and 3D ABAB layer structure for 1, 2, and 3 respectively. Despite variations in the cation shape on the aromatic N–heterocyclic compounds, there all existed strong intermolecular N–H⋯O(carbonyl) hydrogen bonds. In compounds 1, and 3 the N+–H⋯O interaction between the N+–H group of the cation and the C=O group of the saccharinate anion is the most important interaction in this family of salts. However, in 2, there was a N–H⋯O interaction between the amino proton and the C=O group of the saccharinate anion. At the next level, the aromatic C–H proton interacts with the sulfonyl O atom. There are also π–π interactions in compounds 12, there is CH3–π interaction in 3. Under these interactions the three compounds exhibit synthons I–III respectively. These interactions are responsible for the high-yielding supramolecular assembly of N-containing aromatic bases and the saccharinate into salts.

Graphical Abstract

Due to the collective weak interactions, the complexes displayed 3D structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lehn JM (1995) Supramolecular chemistry: concepts and prospectives, Chap. 9. VCH, Weinheim

    Google Scholar 

  2. Desiraju GR, Sharma CVK (1995) Perspectives in supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  3. MacGillivray LR, Atwood JL (1999) Angew Chem Int Ed 38:1018

    Article  CAS  Google Scholar 

  4. Boncheva M, Bruzewicz DA, Whitesides GM (2003) Langmuir 19:6066

    Article  CAS  Google Scholar 

  5. Lehn JM (1990) Angew Chem Int Ed 29:1304

    Article  Google Scholar 

  6. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin

    Google Scholar 

  7. Aakeröy CB, Beatty AM (2001) Aust J Chem 54:409

    Article  Google Scholar 

  8. Steed JW, Atwood JL (2000) Supramolecular chemistry. Wiley, Chichester

    Google Scholar 

  9. Burrows AD (2004) Struct Bond 108:55

    CAS  Google Scholar 

  10. Braga D, Maini L, Polito M, Grepioni F (2004) Struct Bond 111:1

    CAS  Google Scholar 

  11. Etter MC (1990) Acc Chem Res 23:120

    Article  CAS  Google Scholar 

  12. Holman KT, Pivovar AM, Swift JA, Ward MD (2001) Acc Chem Res 34:107

    Article  CAS  Google Scholar 

  13. Gould PJ (1986) Int J Pharm 33:201

    Article  CAS  Google Scholar 

  14. Shan N, Bond AD, Jones W (2002) Cryst Eng 5:9

    Article  CAS  Google Scholar 

  15. Bhogala BR, Basavoju S, Nangia A (2005) CrystEngComm 7:551

    Article  CAS  Google Scholar 

  16. Räder K, Stoss P US. Publication number, US4362730, 7 Dec 1982

  17. Rayburn JW, Int. Publication number, WO 00/12067, 9 Mar 2000

  18. Bhatt PM, Ravindra NV, Banerjee R, Desiraju GR (2005) Chem Commun 1073

  19. Banerjee R, Bhatt PM, Ravindra NV, Desiraju GR (2005) Cryst Growth Des 5:2299

    Article  CAS  Google Scholar 

  20. Banerjee R, Bhatt PM, Desiraju GR (2006) Cryst Growth Des 6:1468

    Article  CAS  Google Scholar 

  21. Baran EJ, Yilmaz VT (2006) Coord Chem Rev 250:1980

    Article  CAS  Google Scholar 

  22. Lynch DE, Jones GD (2004) Acta Crystallogr B60:748

    CAS  Google Scholar 

  23. Jin SW, Liu B, Chen WZ (2007) Chin J Struct Chem 26:287

    CAS  Google Scholar 

  24. Jin SW, Chen WZ (2007) Chin J Inorg Chem 23:270

    CAS  Google Scholar 

  25. Jin SW, Wang DQ, Wang XL, Guo M, Zhao QJ (2008) J Inorg Organomet Polym 18:300

    Article  CAS  Google Scholar 

  26. Potewar TM, Ingale SA, Srinivasan KV (2008) Tetrahedron 64:5019

    Article  CAS  Google Scholar 

  27. Bruker (2004) SMART and SAINT. Bruker AXS, Madison

    Google Scholar 

  28. Sheldrick GM (2000) SHELXTL, Structure Determination Software Suite, version 6.14. Bruker AXS, Madison

    Google Scholar 

  29. Banerjee R, Saha BK, Desiraju GR (2006) CrystEngComm 8:680

    Article  CAS  Google Scholar 

  30. Sieroń L (2007) Acta Crystallogr E63:m2336

    Google Scholar 

  31. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  32. Galstyan A, Sanz Miguel PJ, Lippert B (2010) Chem Eur J 16:5577

    CAS  Google Scholar 

  33. Au-Alvarez O, Peterson RC, Crespo AA, Esteva YR, Alvarez HM, Stiven AMP, Hernández RP (1999) Acta Crystallogr C55:821

    CAS  Google Scholar 

  34. Form GR, Raper ES (1974) Acta Crystallogr B30:342

    Google Scholar 

Download references

Acknowledgment

The authors are grateful for the financial support of the Education Office Foundation of Zhejiang Province (project No. Y201017321) and the Zhejiang A and F University Science Foundation (project No. 2009FK63).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Jin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, S., Wang, D. Hydrogen Bonded 3D Supramolecular Architectures of Three Saccharinate Salts. J Chem Crystallogr 41, 1085–1092 (2011). https://doi.org/10.1007/s10870-011-0050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0050-6

Keywords

Navigation