Skip to main content
Log in

Dichloroenol Ethers X-ray Analysis in the Mechanistic Elucidation of Ynol Ethers Formation

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

X-ray crystallographic data are provided for dichloroenol ethers (S,E)-2-(1-(1,2-dichlorovinyloxy)ethyl)-1,3,5-triisopropylbenzene (2) and (S,E)-2-(1-(1,2-dichloroprop-1-enyloxy)ethyl)-1,3,5-triisopropylbenzene (3). The former forms colorless crystals (orthorhombic, P212121 space group) and exhibits the following cell parameters: a = 10.212(5) Å; b = 10.359(8) Å; c = 18.217(6) Å. The latter also affords colorless crystals (monoclinic, P21 space group) with a = 13.558(2) Å; b = 10.891(1) Å; c = 15.260(2) Å; β = 115.65(1)°. The data complement those recently reported for two other dichloroenol ethers, ((1R,2S)-2-((E)-1,2-dichlorovinyloxy)cyclohexyl)benzene (5) and ((1R,2S)-2-((E)-1,2-dichloroprop-1-enyloxy)cyclohexyl)benzene (6). The X-ray analyses of these dichloroenol ethers, the only reported to date, establish unambiguously the trans stereochemistry of the chlorides in these and, by extension, similarly prepared enol ethers. This information was required for the complete mechanistic understanding of ynol ethers formation from dichloroenol ethers. Structural comparison of these dichloroenol ethers with some carbon (dichloroalkene) and nitrogen (dichloroenamine) analogues is also presented.

Graphical Abstract

This article reports the X-ray structures of four dichloroenol ethers, which establish the trans relationship of the chlorides. This determination of configuration is the starting point for the mechanistic elucidation of ynol ether formation from dichloroenol ethers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The structures of dichloroenol ethers 5 and 6, reported without detailed discussion in ref 3, represented the first examples.

References

  1. Arens JF (1960) In: Raphael RA, Taylor EC, Wynberg H (eds) Advances in organic chemistry, vol II. Interscience Publishers Ltd, NY, pp 117–212

    Google Scholar 

  2. Rachenko SI, Petrov AA (1989) Russ Chem Rev 58:1671–1702

    Google Scholar 

  3. Normant JF (1963) Bull Soc Chim Fr 1876–1897

  4. Moyano A, Charbonnier F, Greene AE (1987) J Org Chem 52:2919–2922

    Article  CAS  Google Scholar 

  5. Kann N, Bernardes V, Greene AE (1997) Org Synth 14:13

    Google Scholar 

  6. Darses B, Milet A, Philouze C, Greene AE, Poisson J-F (2008) Org Lett 10:4445–4447

    Article  CAS  Google Scholar 

  7. Montanari F, Negrini A (1957) Gazz Chim Ital 87:1061–1067

    CAS  Google Scholar 

  8. Montanari F, Negrini A (1957) Gazz Chim Ital 87:1068–1072

    CAS  Google Scholar 

  9. Ceccon J, Greene AE, Poisson J-F (2006) Org Lett 8:4739–4742

    Article  CAS  Google Scholar 

  10. Fritsch P (1894) Liebigs Ann Chem 279:319

    Article  Google Scholar 

  11. Buttenberg WP (1894) Liebigs Ann Chem 279:324

    Article  Google Scholar 

  12. Wiechell H (1894) Liebigs Ann Chem 279:337

    Article  Google Scholar 

  13. Knorr R (2004) Chem Rev 104:3795–3849

    Article  CAS  Google Scholar 

  14. Eisler S, Tykwinski RR (2005) In: Diederich F, Stang PJ, Tykwinski RR (eds) Acetylene chemistry. chemistry, biology and material science, vol 7. Wiley-VCH, Weinheim

    Google Scholar 

  15. Flack HD (1983) Acta Crystallogr 39:876–881

    Article  Google Scholar 

  16. Thompson AL, Watkin DJ (2009) Tetrahedron Asymmetr 20:712–717

    Article  CAS  Google Scholar 

  17. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A (1993) J Appl Cryst 26:343

    Article  Google Scholar 

  18. Molecular Structure Corporation TeXsan. Single Crystal Structure Analysis Software. Version 1.7. MSC, 3200 Research Forest Drive, The Woodlands, USA, 1992–1997

  19. Johnson CK (1976) ORTEPII. Report ORNL-5138. Oak Ridge National Laboratotry, Oak Ridge

  20. Allen FH, Kennard O, Watson DG, Brammer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans II:S1

    Google Scholar 

  21. Johnson F (1968) Chem Rev 64:375–411

    Article  Google Scholar 

  22. Hoffmann RW (1989) Chem Rev 89:1841–1860

    Article  CAS  Google Scholar 

  23. Delair P, Brot E, Kanazawa A, Greene AE (1999) J Org Chem 64:1383–1386

    Article  CAS  Google Scholar 

  24. Godage HY, Chambers DJ, Evans GR, Fairbanks AJ (2003) Org Biomol Chem 21:3772–3786

    Article  Google Scholar 

  25. Jonczyk A, Michalski K (2002) Synlett 10:1703

    Article  Google Scholar 

  26. Denonne F, Seiler P, Diederich F (2003) Helv Chim Acta 86:3096

    Article  CAS  Google Scholar 

  27. Shimo T, Somekawa K, Wakikawa Y, Uemura H, Tsuge O, Imada K, Tanabe K (1987) Bull Chem Soc Jpn 60:621

    Article  CAS  Google Scholar 

  28. Kende AS, Benechie M, Curran DP, Fludzinski P, Swenson W, Clardy J (1979) Tetrahedron Lett 20:4513

    Article  Google Scholar 

Download references

Acknowledgments

We thank Prof. P. Dumy (UJF) for his interest in our work and the French Ministry of Education, Research and Technology (MENRT) for a fellowship (to B.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Poisson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darses, B., Philouze, C., Greene, A.E. et al. Dichloroenol Ethers X-ray Analysis in the Mechanistic Elucidation of Ynol Ethers Formation. J Chem Crystallogr 41, 1053–1059 (2011). https://doi.org/10.1007/s10870-011-0045-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0045-3

Keywords

Navigation