Skip to main content
Log in

Layered, Two-Dimensional Hydrogen Bonding Nets in the Structure of the 1:1 Encounter Complex TMTTF–TCNB: Combined Structural and Spectroscopic Study

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis, crystal structure and spectroscopic properties as determined by infrared spectroscopy of the 1:1 encounter complex TMTTF–TCNB are reported. The complex crystallizes with each of the constituent molecules on an inversion center in the triclinic space group P − 1 with a = 6.7953(16) Å, b = 7.9141(16) Å, c = 9.775(2) Å, α = 98.63(3)°, β = 105.27(3)°, and γ = 94.49(3)°. The determination of this crystal structure provided cyanide bond distances which when compared to the reported literature values for free TCNB suggest the presence of the neutral acceptor. The central C=C bond and four ancillary C–S bonds in TMTTF provide structural evidence that the donor, like the acceptor, also exists in its neutral state. These crystallographic observations and conclusions were confirmed by infrared spectroscopic analysis. Of particular interest is a two dimensional hydrogen bonding net which occurs within the (\(13\bar{1}\)) plane. When stacked as repeat units along the a axis, this net is reminiscent of stacked graphene layers in graphite.

Graphical Abstract

The synthesis, crystal structure and spectroscopic properties as determined by infrared spectroscopy of the 1:1 encounter complex TMTTF-TCNB are reported. The complex crystallizes with each of the constituent molecules on an inversion center in the triclinic space group P − 1 with a = 6.7953(16) Å, b = 7.9141(16) Å, c = 9.775(2) Å, α = 98.63(3)°, β = 105.27(3)°, and γ = 94.49(3)°. The determination of this crystal structure provided cyanide bond distances which when compared to the reported literature values for free TCNB suggest the presence of the neutral acceptor. Of particular interest is a two dimensional hydrogen bonding net which occurs within the (\(13\bar{1}\)) plane. When stacked as repeat units along the a axis, this net is reminiscent of stacked graphene layers in graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ferraris J, Cowan DO, Walatka VJ, Perlstein JH (1973) J Am Chem Soc 95:948

    Article  CAS  Google Scholar 

  2. Coleman LB, Cohen MJ, Sandmand DJ, Yamagishi FG, Garito AF, Heeger AJ (1973) Solid State Commun 12:1135

    Article  Google Scholar 

  3. Phillips TE, Kistenmacher J, Ferraris JP, Cowan DO (1973) J Chem Soc Chem Commun 471

  4. Batail P, Boubekeur K, Fourmigué M, Gabriel JCP (1998) Chem Mater 10:3005

    Article  CAS  Google Scholar 

  5. Davidson A, Boubekeur K, Pènicaud A, Auban P, Lenoir C, Batail P, Hervé G (1989) J Chem Soc Chem Commun 18:1373

    Google Scholar 

  6. Pènicaud A, Boubekeur K, Batail P, Canadell E, Auban-Senzier P, Jerome D (1993) J Am Chem Soc 115:4101

    Article  Google Scholar 

  7. Coulon C, Livage C, Gonzalez L, Boubekeur K, Batail P (1993) J Phys 1(3):1

    Google Scholar 

  8. Coronado E, Gómez-García CJ (1995) Comments Inorg Chem 17:255

    Article  CAS  Google Scholar 

  9. Gómez-García CJ, Giménez-Saiz C, Triki S, Coronado E, Magueres PL, Ouahab L, Ducasse L, Sourisseau C, Delhaes P (1995) Inorg Chem 34:4139

    Article  Google Scholar 

  10. Galán-Mascarós JR, Giménez-Saiz C, Triki S, Gómez-García CJ, Coronado E, Ouahab L (1995) Angew Chem Int Ed Engl 34:1460

    Article  Google Scholar 

  11. Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Triki S (1998) J Am Chem Soc 120:4671

    Article  CAS  Google Scholar 

  12. Kobayashi H, Tomita H, Naito T, Kobayashi A, Sakai F, Watanabe T, Cassoux P (1996) J Am Chem Soc 118:368

    Article  CAS  Google Scholar 

  13. Kurmoo M, Graham AW, Day P, Coles SJ, Hursthouse MB, Caulfield JL, Singleton J, Pratt FL, Hayes W, Ducasse L, Guinneau P (1995) J Am Chem Soc 117:12209

    Article  CAS  Google Scholar 

  14. Coronado E, Galán-Mascarós JR, Gómez-Garcia CJ, Laukhin V (2000) Nature 408:447

    Article  CAS  Google Scholar 

  15. Triki S, Ouahab L, Grandjean D, Fabre JM (1991) Acta Cryst C47:1371

    CAS  Google Scholar 

  16. Pénicaud A, Batail P, Coulon C, Canadell E, Perrin C (1990) Chem Mater 2:123

    Article  Google Scholar 

  17. Reinheimer EW, Galán-Mascarós JR, Gómez-García CJ, Zhao H, Fourmigué M, Dunbar KR (2008) J Mol Struct 890:81

    Article  CAS  Google Scholar 

  18. Adachi T, Ojima E, Kato K, Kobayashi H, Miyazaki T, Tokumoto M, Kobayashi A (2000) J Am Chem Soc 122:3238

    Article  CAS  Google Scholar 

  19. Balicas L, Behnia K, Kang W, Auban-Senzier P, Canadell E, Jérome D, Ribault M, Fabre JM (1994) Adv Mater 6:762

    Article  CAS  Google Scholar 

  20. Jérome D, Mazaud M, Ribault M, Bechgaard K (1980) J Phys Lett L95:1416

    Google Scholar 

  21. Jérome D (1991) Science 252:1509

    Article  Google Scholar 

  22. Thorup N, Rindorf G, Soling H, Bechgaard K (1981) Acta Cryst B37:1236

    CAS  Google Scholar 

  23. Bechgaard K, Jacobsen C, Mortensen K, Pedersen H, Thorup N (1979) Solid State Commun 33:1119

    Article  Google Scholar 

  24. Brun G, Peytavin S, Liautard B, Maurin ET, Fabre JM, Giral L (1977) C R Acad Sci (Paris) 284C:211

    Google Scholar 

  25. Phillips TE, Kistenmacher TJ, Bloch AN, Ferraris JP, Cowan DO (1977) Acta Cryst B33:422

    CAS  Google Scholar 

  26. Mayerle JJ, Torrance JB (1981) Acta Cryst B37:2030

    CAS  Google Scholar 

  27. Reinheimer EW, Zhao H, Dunbar KR (2008) Synth Met 158:447

    Article  CAS  Google Scholar 

  28. Prout CK, Tickle IJ (1973) J Chem Soc Perkin Trans II:520

    Google Scholar 

  29. Lefebvre J, Ecolivet C, Bourges P, Mierzejewski A, Luty T (1991) Phase Transit 32:223

    Article  CAS  Google Scholar 

  30. Hosaka N, Obata M, Suzuki M, Saiki T, Takeda K, Kuwata- Gonokami M (2008) Appl Phys Lett 92:113305

  31. Arnold BR, Schill AW, Poliakov PV (2001) J Phys Chem A 105:537

    Article  CAS  Google Scholar 

  32. Ito Y, Nakabayashi H, Ohb S, Hosomi H (2000) Tetrahedron 56:7139

    Article  CAS  Google Scholar 

  33. Dahl T (2000) Acta Cryst C56:708

    CAS  Google Scholar 

  34. Deperasinska I, Prochorow J, Dresner J (1998) J Lumin 79:65

    Article  CAS  Google Scholar 

  35. Ito Y, Endo S, Ohba S (1997) J Am Chem Soc 119:5974

    Article  CAS  Google Scholar 

  36. Kozankiewicz B (1997) J Lumin 71:37

    Article  CAS  Google Scholar 

  37. Lefebvre J, Rohleder K, Mierzejewski A, Luty T (1995) J Chem Phys 102:2165

    Article  CAS  Google Scholar 

  38. Ferguson G, Foster R, Iball J, Scrimgeour SN, Williams BC (1990) Acta Cryst C46:2396

    CAS  Google Scholar 

  39. Lefebvre J, Miniwicz A, Kowal R (1989) Acta Cryst C45:1372

    CAS  Google Scholar 

  40. Okajima S, Lim BT, Lim EC (1985) Chem Phys Lett 122:82

    Article  CAS  Google Scholar 

  41. Miniewicz A, Samoc M, Williams DF (1984) Mol Cryst Liq Cryst 111:199

    Article  CAS  Google Scholar 

  42. Samoc M, Williams DF (1983) J Chem Phys 78:1924

    Article  CAS  Google Scholar 

  43. Stezowskii JJ (1979) J Phys Chem 83:550

    Article  Google Scholar 

  44. Wright JD, Yakushi K, Kuroda H (1978) Acta Cryst B34:1934

    CAS  Google Scholar 

  45. Wright JD, Ohta T, Kuroda H (1976) Bull Chem Soc Jpn 49:2961

    Article  CAS  Google Scholar 

  46. Ohashi M, Nakayama N (1976) Chem Lett 1143

  47. Clayton PR, Worswick RD, Staveley LAK (1976) Mol Cryst Liq Cryst 36:153

    Article  CAS  Google Scholar 

  48. Ohashi Y (1973) Acta Cryst B29:2863

    Google Scholar 

  49. Tsuchiya H, Marumo F, Saito Y (1973) Acta Cryst B29:659

    Google Scholar 

  50. Egawa K, Yamanaka C, Nakashim M, Mataga N (1971) Bull Chem Soc Jpn 44:3287

    Article  CAS  Google Scholar 

  51. Niimura N, Ohashi Y, Saito Y (1968) Bull Chem Soc Jpn 41:1815

    Article  CAS  Google Scholar 

  52. Kumakura S, Iwasaki F, Saito Y (1967) Bull Chem Soc Jpn 40:1826

    Article  CAS  Google Scholar 

  53. Ohashi Y, Iwasaki H, Saito Y (1967) Bull Chem Soc Jpn 40:1789

    Article  CAS  Google Scholar 

  54. Lefebvre J, Odou G, Muller M, Mierzejewski A, Tadeusz L (1989) Acta Cryst B45:323

    CAS  Google Scholar 

  55. Prout CK, Morley T, Tickle IJ, Wright JD (1973) J Chem Soc Perkin Trans II:523

    Google Scholar 

  56. Hosomi H, Ohba S, Ito Y, Nakabayashi H (1997) Acta Cryst C46:IUC9700031

    Google Scholar 

  57. Imai Y, Kamon K, Kido S, Harada T, Tajima N, Sato T, Kuroda R, Matsubara Y (2009) Cryst Eng Comm 11:620

    CAS  Google Scholar 

  58. Bandoli G, Lunardi Clemente DA (1993) J Cryst Spec Res 23:1

    Article  CAS  Google Scholar 

  59. Reinheimer EW, Zhao H, Dunbar KR (2010) J Chem Cryst 40:514

    Article  CAS  Google Scholar 

  60. SMART (1998) Software for the CCD Detector System, version 5.050 (NT). Bruker Analytical X-ray Systems, Madison

    Google Scholar 

  61. SAINT (1998) Software for the CCD Detector System, version 5.01 (NT). Bruker Analytical X-ray Systems, Madison

    Google Scholar 

  62. Blessing RH (1995) Acta Cryst A51:33

    CAS  Google Scholar 

  63. Sheldrick GM (1990) SHELXS-90, Program for the solution of crystal structure. University of Göttingen, Göttingen

    Google Scholar 

  64. Sheldrick GM (1997) SHELXL-97. Program for the refinement of crystal structure. University of Göttingen, Göttingen

    Google Scholar 

  65. (1998) SHELXTL 5.10, program library for structure solution and molecular graphics. PC Version, Bruker Analytical X-ray Systems, Madison

  66. Barbour LJ (2001) J Supramol Chem 1:189

    Article  CAS  Google Scholar 

  67. Fourmigué M, Uzelmeier CE, Boubekeur K, Bartley SL, Dunbar KR (1997) J Organomet Chem 529:343

    Article  Google Scholar 

  68. Smucker BW, Dunbar KR (2000) Dalton Trans 8:1309

    Google Scholar 

  69. Uzelmeier CE, Smucker BW, Reinheimer EW, Shatruk M, O’Neal A, Fourmigué M, Dunbar KR (2006) Dalton Trans 5259

  70. Uzelmeier CE, Bartley SL, Fourmigué M, Rogers R, Grandinetti G, Dunbar KR (1998) Inorg Chem 37:6706

    Article  CAS  Google Scholar 

  71. Devic T, Batail P, Fourmigué M, Avarvari N (2004) Inorg Chem 43:3136

    Article  CAS  Google Scholar 

  72. Avarvari N, Fourmigué M (2004) Chem Comm 1300

  73. Avarvari N, Martin D, Fourmigué M (2002) J Organomet Chem 643–644:292

    Article  Google Scholar 

  74. Gouverd C, Biaso F, Cataldo L, Berclaz T, Geoffrey M, Levillain E, Avarvari N, Fourmigué M, Sauvage FX, Wartelle C (2005) Phys Chem Chem Phys 7:85

    Article  CAS  Google Scholar 

  75. Kobayashi A, Fujiwara E, Kobayashi H (2004) Chem Rev 104:5243

    Article  CAS  Google Scholar 

  76. Alberola A, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ (2003) J Am Chem Soc 125:10774

    Article  CAS  Google Scholar 

  77. Coronado E, Galán-Mascarós JR, Gómez-García CJ, Murcia-Martínez A, Canadell E (2004) Inorg Chem 43:8072

    Article  CAS  Google Scholar 

  78. Coronado E, Galán-Mascarós JR, Gómez-García CJ, Martínez-Ferrero E, van Smaalen S (2004) Inorg Chem 43:4808

    Article  CAS  Google Scholar 

  79. Clemente-León M, Coronado E, Galán-Mascarós JR, Giménez-Saiz C, Gómez-García CJ, Ribera E, Vidal-Gancedo J, Rovira C, Canadell E, Laukhin V (2001) Inorg Chem 40:3526

    Article  Google Scholar 

  80. Clemente-León M, Coronado E, Galán-Mascarós JR, Gómez-García CJ, Rovira C, Laukhin VN (1999) Synth Met 103:2339

    Article  Google Scholar 

  81. Clemente-León M, Coronado E, Galán-Mascaros JR, Giménez-Saiz C, Gómez-García CJ, Fabre JM (1999) Synth Met 103:2279

    Article  Google Scholar 

  82. Bousseau M, Valade L, Legros JP, Cassoux P, Garbauskas M, Interrante LV (1986) J Am Chem Soc 108:1908

    Article  CAS  Google Scholar 

  83. Perruchas S, Boubekeur K, Auban-Senzier P (2004) J Mater Chem 14:3509

    Article  CAS  Google Scholar 

  84. Kazheva ON, Alexandrov GG, Dyachenko OA, Zinenko TN, Kravchenko AV, Staroub VA, Khotkevich AV (2006) Synth Met 156:251

    Article  CAS  Google Scholar 

  85. Chi X, Scott B, Lawes G, Ramirez AP (2004) J Chem Cryst 34:249

    Article  CAS  Google Scholar 

  86. Umland TC, Allie S, Kuhlmann T, Coppens P (1987) J Phys Chem 92:6456

    Article  Google Scholar 

  87. Uzelmeier CE, Fourmigué M, Dunbar KR (1998) Acta Cryst C54:1047

    CAS  Google Scholar 

  88. Shibaeva RP (1984) Kristallografiya 29:480

    CAS  Google Scholar 

  89. Szalay PS, Galán-Mascarós JR, Clerac R, Dunbar KR (2001) Synth Met 122:535

    Article  CAS  Google Scholar 

  90. Miller JS, Zhang JH, Reiff WM, Dixon DA, Preston LD, Reis AH Jr, Gebert E, Extine M, Troup J, Epstein AJ, Ward MD (1987) J Phys Chem 91:4344

    Article  CAS  Google Scholar 

  91. Dixon DA, Calabrese JC, Miller JS (1989) J Phys Chem 93:2284

    Article  CAS  Google Scholar 

  92. Miyasaka H, Campos-Fernandez CS, Clerac R, Dunbar KR (2000) Angew Chem Int Ed 39:3831

    CAS  Google Scholar 

  93. Fourmigué M, Batail P (2004) Chem Rev 104:5379

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Welch Foundation (Grant A-1449) and the U.S. Department of Energy (Grant DE-FG01-05ER05-01). We also acknowledge the National Science Foundation (Grant 9807975) for the funds to purchase the X-ray diffractometer. EWR would like to sincerely thank Nancy Erskine for additional editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric W. Reinheimer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinheimer, E.W., Rivas, M.F.B., Zhao, H. et al. Layered, Two-Dimensional Hydrogen Bonding Nets in the Structure of the 1:1 Encounter Complex TMTTF–TCNB: Combined Structural and Spectroscopic Study. J Chem Crystallogr 41, 936–943 (2011). https://doi.org/10.1007/s10870-011-0021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0021-y

Keywords

Navigation