Skip to main content
Log in

Biological-Activity Predictions, Crystallographic Comparison and Role of Packing Interactions in Androstane Derivatives of Steroids

  • Review Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A total of 60 molecules of androstane derivatives of steroids (1–60) have been undertaken to predict their pharmacological effects, specific mechanisms of action, known toxicities, drug likeness, etc., by using the statistics of multilevel neighbourhoods of atoms (MNA) descriptors for active and inactive fragments. The biological activity spectra for substances have been correlated on SAR base (Structure–activity relationships data and knowledge base) which provides the different Pa (probability of activity) and Pi (probability of inactivity). The Lipinski’s rule predicts that all the androstane derivatives have stronger preponderance for “cancer-like-drug” molecules and some of their related analogous have been entered in the ANCI (American National Cancer Institute) database. Some selected bond distances and bond angles of interest have been taken into account and deviation of bond distances/bond angles, vis-a-vis the substitutional group and X–H···A intra/intermolecular hydrogen bonds have been discussed in detail. X–H···A intra/intermolecular hydrogen bonds in the identified molecules have been described with the standard distance and angle cut-off criteria. Dθ and dθ scatter plots for X–H···A intra-and intermolecular interactions are presented for better understanding of packing interactions existing among these derivatives. Comparison of contacts from H(C) to O and H(O) to O, vis-a-vis their crystal structure reveals that contacts from H(O) to O predominate over H(C) to O. Solvent–solute/solute–solvent interactions have also been investigated to understand more complicated processes that occur for biomolecules in aqueous solutions. Most of the molecules show high value of drug-likeness whereas molecule-3 (82.5%), 36 (87.2%), 41 (83.7%), 43 (86.5%) and 50 (85.9%) exhibit low value of drug-likeness, instead of observed range of 90.3–99.2%.

Graphical Abstract

Steroidal molecules are held in their defined 3-D structures by hydrogen bonds. The hydrogen bonding/solvent–solvent interactions for a steroidal molecule (androstane derivative) are plotted in Figure. The asymmetric unit cell in androstane derivative contains two crystallographically independent molecules and two acetic acid molecules. The two acetic acid molecules are connected to one another through solvent–solvent [O6(Acetic acid)–H6C(O6)···5′(Acetic acid); O6′(Acetic acid)–H6′C(O6′)···O5(Acetic acid)] interactions. The solvent-solvent interactions as observed in said steroidal derivative are rarely found in steroids and such investigations could be important to understand more complicated processes that occur for biomolecules in aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 4

    Google Scholar 

  2. Briggs MJ, Brothern J (1970) Steroid biochemistry and pharmacology. Academic Press, London/New York, p 121

    Google Scholar 

  3. Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 70

    Google Scholar 

  4. Gower DB, Bicknell DC (1972) Acta Endocr 70:567

    CAS  Google Scholar 

  5. Makin HLJ (1975) Biochemistry of steroid hormones. Blackwell Scientific Publications, Oxford, p 77

    Google Scholar 

  6. Bhavnaish Chand, Malik MA, Singh A (2009) Indian J Biochem Biophys (Communicated)

  7. Bhavnaish C, Malik MA, Singh A (2009) Crystallogr Rep (Communicated)

  8. Precioux PG, Busetta B, Courseille C, Hospital M (1975) Acta Crystallogr B31:1527

    Google Scholar 

  9. Weeks CM, Rohrer DC, Duax WL, Osawa Y (1975) Acta Crystallogr B31:2525

    CAS  Google Scholar 

  10. Rohrer DC, Duax WL, Osawa Y (1976) Acta Crystallogr B32:2410

    CAS  Google Scholar 

  11. Precioux PG, Busetta B, Hospital M (1977) Acta Crystallogr B33:563

    Google Scholar 

  12. Precioux PG, Busetta B, Hospital M (1977) Acta Crystallogr B33:566

    Google Scholar 

  13. Neubert LA, Carmack M, Huffman JC (1977) Acta Crystallogr B33:962

    CAS  Google Scholar 

  14. Rohrer DC, Strong PD, Duax WL, Segaloff A (1978) Acta Crystallogr B34:2913

    CAS  Google Scholar 

  15. Duax WL, Rohrer DC, Segaloff A (1982) Acta Crystallogr B38:531

    CAS  Google Scholar 

  16. De Cowe HJ, Cox PJ, Sim GA (1982) Acta Crystallogr B38:662

    CAS  Google Scholar 

  17. Cox PJ, Sim GA (1982) Acta Crystallogr B38:1360

    CAS  Google Scholar 

  18. Weeks CM, Strong PD, Duax WL, Vickery LE (1983) Acta Crystallogr C39:1698

    CAS  Google Scholar 

  19. Solans X, Piniella JF, Brainso JL, Miravitlles C (1987) Acta Crystallogr C43:2372

    CAS  Google Scholar 

  20. Danaci S, Kendi E, Mores FG, Behm H, Beurskens PT (1988) Acta Crystallogr C44:1677

    CAS  Google Scholar 

  21. Michel AG, Reul R, Dewez NM (1989) Acta Crystallogr C45:1760

    CAS  Google Scholar 

  22. Galdecki Z, Grochulski P, Wawrzak Z (1989) J Cryst Spect Res 19(3):577–587

    Article  CAS  Google Scholar 

  23. Cox PJ, Mac Manus SM, Gibb BC, Nowell IW, Howie RA (1990) Acta Crystallogr C46:334

    CAS  Google Scholar 

  24. Eggleston DS, Lan-Hargest HY (1990) Acta Crystallogr C46:1686

    CAS  Google Scholar 

  25. Roszak AW, Codding PW (1990) Acta Crystallogr C46:1700

    CAS  Google Scholar 

  26. Drouin M, Ruel R, Michel AG (1991) Acta Crystallogr C47:1689

    CAS  Google Scholar 

  27. Meetsma A, Van Leusen D, Van Leusen AM (1993) Acta Crystallogr C49:351

    CAS  Google Scholar 

  28. Michel AG, Droun Marc (1993) Acta Crystallogr C49:1683

    CAS  Google Scholar 

  29. Brock CP, Song J (1995) Acta Crystallogr C51:2437

    CAS  Google Scholar 

  30. Steiner T (1996) Cryst Rev 6:1

    Article  CAS  Google Scholar 

  31. Ramos Silva M, Paixao JA, De Almedia MJM, Tavares Da Silva EJ, Melo ML, Campos Neves AS (1996) Acta Crystallogr C52:2892

    Google Scholar 

  32. Paixao JA, Ramos Silva M, De Almedia MJM, Tavares Da Silva EJ, Melo ML, Campos Neves AS (1997) Acta Crystallogr C53:347

    CAS  Google Scholar 

  33. Brunskill APJ, Lalancette RA, Thompson HW (1997) Acta Crystallogr C53:903

    CAS  Google Scholar 

  34. Andradre LCR, Paixao JA, De Almedia MJM, Tavares Da Silva EJ, Melo ML, Campos Neves AS (1997) Acta Crystallogr C53:938

    Google Scholar 

  35. Anthony A, Jaskolski M, Nangia A, Desiraju GR (1998) Acta Crystallogr C54:1894

    CAS  Google Scholar 

  36. Anthony A, Jaskolski M, Nangia A, Desiraju GR (1998) Acta Crystallogr C54:1898

    CAS  Google Scholar 

  37. Lazar D, Stankovic S, Sakac M, Penov-Gasic K, Kovacevic R, Medic-Mijacevic L, Pilate T (1998) Acta Crystallogr C54:1965

    CAS  Google Scholar 

  38. Andrade LCR, Paixao JA, De Almedia MJM, Tavares Da Silva EJ, Melo ML, Campos Neves AS (1999) Acta Crystallogr C55:637

    CAS  Google Scholar 

  39. Anthony A, Jaskolski M, Nangia A (1999) Acta Crystallogr C55:787

    CAS  Google Scholar 

  40. Andrade LCR, Paixao JA, De Almedia MJM, Tavares Da Silva EJ, Melo ML, Campos Neves AS (1999) Acta Crystallogr C55:1186

    CAS  Google Scholar 

  41. Thompson HW, Lalancette RA, Brunskill APJ (1999) Acta Crystallogr C55:1680

    CAS  Google Scholar 

  42. Andrade LC R, Paixao JA, De Almedia MJM, Tavares Da Silva EJ, Melo ML, Campos Neves AS (1999) Acta Crystallogr C55:2149

    Google Scholar 

  43. Vasuki G, Parthasarthi V, Ramamurthi K, Jindal DP, Dubey S (2001) Acta Crystallogr C57:1062

    CAS  Google Scholar 

  44. Newman JM, Lalancette RA, Thompson HW (2002) Acta Crystallogr C58:o402

    CAS  Google Scholar 

  45. Hema R, Parthasarthi V, Thamotharan S, Dubey S, Jindal DP (2002) Acta Crystallogr C59:o421

    Google Scholar 

  46. Thamotharan S, Parthasarthi V, Gupta R, Jindal DP, Linden A (2002) Acta Crystallogr C58:o727

    CAS  Google Scholar 

  47. Hema R, Parthasarthi V, Thamotharan S, Dubey S, Jindal DP (2003) Acta Crystallogr C59:o213

    CAS  Google Scholar 

  48. Lalancette RA, Thompson HW (2003) Acta Crystallogr C59:o274

    CAS  Google Scholar 

  49. Thamotharan S, Parthasarthi V, Gupta R, Jindal DP, Linden A (2003) Acta Crystallogr C59:o724

    CAS  Google Scholar 

  50. Paixao JIF, Salvador JAR, Paixao JA, Beja AM, Ramos Silva M, Rocha Gonsalves AM (2004) Acta Crystallogr C60:o72

    CAS  Google Scholar 

  51. Thamotharan S, Parthasarthi V, Gupta R, Guleria S, Jindal DP, Linden A (2004) Acta Crystallogr C60:o75

    Google Scholar 

  52. Thamotharan S, Parthasarthi V, Dubey S, Jindal DP, Linden A (2004) Acta Crystallogr C60:o110

    CAS  Google Scholar 

  53. Thamotharan S, Parthasarthi V, Gupta R, Jindal DP, Linden A (2004) Acta Crystallogr C60:o158

    CAS  Google Scholar 

  54. Thamotharan S, Parthasarthi V, Gupta R, Jindal DP, Linden A (2004) Acta Crystallogr C60:o161

    CAS  Google Scholar 

  55. Paixao JIF, Salvador JAR, Paixao JA, Beja AM, Ramos Silva M, Rocha Gonsalves AM (2004) Acta Crystallogr C60:o630

    CAS  Google Scholar 

  56. Lazar D, Klisuric O, Stankovic S, Penov-Gasic K, Djurendic E, Kovacevic R (2004) Acta Crystallogr C60:o671

    CAS  Google Scholar 

  57. Rajnikant V, Dinesh J, Sawhney A, Mousmi B, Gupta BD (2004) J Chem Crystallogr 34(8):523

    Article  Google Scholar 

  58. Andrade LCR, Paixao JA, De Almedia MJM, Fernandes Roleria FM, Travares Da Silva EJ (2005) Acta Crystallogr C61:o131

    CAS  Google Scholar 

  59. Rajnikant, Dinesh, Mousmi (2005) J Chem Cryst 36(5):283

    Google Scholar 

  60. Filimonov DA, Poroikov VV, Borodina Yu, Gloriozova T (1999) J Chem Inf Comput Sci 39:666

    CAS  Google Scholar 

  61. Poroikov VV, Filimonov DA (2001) Computer-assisted predictions of biological activity in search for and optimization of new drugs. Iridium Press, Moscow, p 149

    Google Scholar 

  62. Poroikov VV, Akimov DA, Shabelnikova E, Filimonov DA (2001) SAR and QSAR in Environ Res 12(4):327

    Article  CAS  Google Scholar 

  63. Anzali S, Barnickel G, Cezanne B, Krug M (2001) J Med Chem 44:2432

    Article  CAS  Google Scholar 

  64. Poroikov VV, Filimonov DA, Ihlenfeldt WD, Gloriozova TA, Lagunin AA, Borodina YV, Stepanchikova AV, Nicklaus MC (2003) J Chem Inf Comput Sci 43:228

    CAS  Google Scholar 

  65. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (1997) Adv Drug Deliv Rev 23:3

    Article  CAS  Google Scholar 

  66. Sutton LE (1965) Tables of interatomic distances and configuration in molecules and ions. Special Publication No. 18. Chemical Society, London

    Google Scholar 

  67. Allen FH, Kennard O, Watson DG, Bramer L, Orpen AG, Taylor R (1987) J Chem Soc Perkin Trans 2:S1–S19

    Google Scholar 

  68. Bartell LS, Bonham RA (1960) J Chem Phys 32(3):824

    Article  CAS  Google Scholar 

  69. Palenik GJ (1965) Acta Cryst 19:47

    Article  CAS  Google Scholar 

  70. Sudralingam M (1966) Acta Crystallogr B21:495

    Article  Google Scholar 

  71. Pletcher J, Sax M (1972) J Am Chem Soc 94:3998

    Article  CAS  Google Scholar 

  72. Taylor R, Kennard O (1982) J Am Chem Soc 104:5063

    Article  CAS  Google Scholar 

  73. Steiner T, Saenger W (1992) Acta Crystallogr B48:819

    CAS  Google Scholar 

  74. Steiner T, Saenger W (1992) J Am Chem Soc 114:10146

    Article  CAS  Google Scholar 

  75. Steiner T (1996) Cryst Rev 6:7

    Article  Google Scholar 

  76. Jefferey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York, p 400

    Google Scholar 

  77. Steiner T (1998) Acta Crystallogr B54:456

    CAS  Google Scholar 

  78. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 66

    Google Scholar 

  79. Steiner T (2002) Angew Chem Int Ed Eng 41:48

    Article  CAS  Google Scholar 

  80. Olovsson I, Jonsson PG (1976) The hydrogen bond. Recent developments in theory & experiment, vol 2. North Holland, Amsterdam, p 393

  81. Desiraju GR (1991) Acc Chem Res 24:270

    Article  Google Scholar 

  82. Bernstein J (1994) In: Burgi HB, Dunitz JD (eds) Structure correlation, vol 2. VCH, Weinheim, p 431

  83. Jeffery GA (1999) J Mol Struct 485:293

    Article  Google Scholar 

  84. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 116

    Google Scholar 

  85. Steiner T (2001) Acta Crystallogr C57:775

    CAS  Google Scholar 

  86. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press Inc, New York, p 13

    Google Scholar 

  87. Rivelino R, Canuto S, Coutinho K (2004) Braz J Phys 34(1):84

    Article  CAS  Google Scholar 

  88. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press Inc, New York

    Google Scholar 

  89. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161

    Article  CAS  Google Scholar 

  90. Kollman P (1993) Chem Rev 93:2395

    Article  CAS  Google Scholar 

  91. Baldridge KK, Jonas V, Bain AD (2000) J Chem Phys 113(17):7519

    Article  CAS  Google Scholar 

  92. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, New York

    Google Scholar 

  93. Coutinho K, Canuto S, Zerner MC (2000) J Chem Phys 112:9874

    Article  CAS  Google Scholar 

  94. Canuto S, Coutinho K, Trzesniak D (2002) Adv Quantum Chem 41:161

    Article  CAS  Google Scholar 

  95. Jedlovszky P, Turi L (1997) J Phys Chem B101:5429

    Google Scholar 

  96. Tezuka T, Nakagawa M, Yokoi K, Nagawa Y, Yamagaki YT, Nakanishi H (1997) Tetrahedron Lett 38(24):4223

    Article  CAS  Google Scholar 

  97. Davidson MG, Lamb S (1997) Polyhedron 16:4393

    Article  CAS  Google Scholar 

  98. Klebe G, Mietzner T, Weber F (1999) J Comput-Aided Mol Des 13:35

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhavnaish Chand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chand, B., Malik, M.A. Biological-Activity Predictions, Crystallographic Comparison and Role of Packing Interactions in Androstane Derivatives of Steroids. J Chem Crystallogr 41, 255–275 (2011). https://doi.org/10.1007/s10870-010-9979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9979-0

Keywords

Navigation