Skip to main content
Log in

Hydrothermal Synthesis and Structure of the Solid Solution (Fe0.54Mn0.46)(PO4)⋅2H2O

  • ORIGINAL PAPER
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The iron-manganese phosphate of composition (Fe0.54Mn0.46)(PO4).2H2O has been obtained as a single-phase product using hydrothermal methods and the structure has been determined by single crystal X-ray diffraction. The title compound is orthorhombic, Pbca, a = 8.720(1), b = 9.884(1), c = 10.114(2) Å, isostructural with strengite. The structure consists of a linkage of MO6 octahedra and PO4 3− tetrahedra. The octahedra are insular and are held together to form a three-dimensional structure by the tetrahedra. The crystal structure study revealed that (Fe0.54Mn0.46)(PO4)⋅2H2O exhibits a strong Jahn–Teller effect. The compound has been characterized by Raman and IR Spectroscopy, showing the bonds characteristic of the PO4 3− polyanions. Measurements by the electric permittivity revealed a peak at 350 K.

Graphical Abstract

The iron-manganese phosphate of composition (Fe0.54Mn0.46)(PO4)⋅2H2O has been obtained as a single-phase product using hydrothermal methods and the structure has been determined by single crystal X-ray diffraction. The title compound is orthorhombic, Pbca, a = 8.720(1), b = 9.884(1), c = 10.114(2) Å, isostructural with strengite. The structure consists of a linkage of MO6 octahedra and PO4 3− tetrahedra. The octahedra are insular and are held together to form a three-dimensional structure by the tetrahedra. The crystal structure study revealed that (Fe0.54Mn0.46)(PO4)⋅2H2O exhibits a strong Jahn–Teller effect. The compound has been characterized by Raman and IR Spectroscopy, showing the bonds characteristic of the PO4 3− polyanions. Measurements by the electric permittivity revealed a peak at 350 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Marcu IC, Millet JM, Sandulescu I (2001) Prog Catal 10:71

    CAS  Google Scholar 

  2. Davis ME, Lobo RF (1992) Chem Mater 4:756

    Article  CAS  Google Scholar 

  3. Jian-Jiang B, Dong-Wan K, Kug Sun H (2003) J Eur Ceram Soc 23:2589

    Article  Google Scholar 

  4. Martinelli JR, Sene FF, Gomes L (2000) J Non Cryst Solid 263:299

    Article  Google Scholar 

  5. Carmen P, Josefina P, Regino SP, Caridad RV, Natalia S (2003) Chem Mater 15:3347

    Article  Google Scholar 

  6. Lightfoot P, Cheetham AK, Sleight AW (1987) Inorg Chem 26:3544

    Article  CAS  Google Scholar 

  7. Aranda MAG, Attfield JP, Bruque S, Palacio F (1992) J Mater Chem 2:501

    Article  CAS  Google Scholar 

  8. Eventoff W, Martin R (1972) Am Mineral 57:45–51

    CAS  Google Scholar 

  9. Durif A, Averbuch-Pouchot MT (1982) Acta Crystallogr B38:2883

    CAS  Google Scholar 

  10. Song Y, Zavalij PY, Suzuki M, Whittingham MS (2002) Inorg Chem 41(22):5778

    Article  CAS  Google Scholar 

  11. Rémy P (1971) These de doctorat d’état, faculté des sciences de l’université de Paris

  12. Yamada A, Chung SC, Hinokuna K (2001) J Electrochem Soc 148(3):A224–A229

    Article  CAS  Google Scholar 

  13. Yamada A, Hosoya M, Chung SC, Kudo Y, Hinokuma K, Liu KY, Nishi Y (2003) J Power Sources 119–121:232–238

    Article  Google Scholar 

  14. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  15. Andersson AS, Kalska B, Haggstom L, Thomas JO (2000) Solid State Ionics 130:41

    Article  CAS  Google Scholar 

  16. North ACT, Phillips DC, Matthews FS (1968) Acta Cryst A24:351–359

    Google Scholar 

  17. Sheldrick GM (1997) SHELXS97, program for crystal structure solution. University of Göttingen, Germany

    Google Scholar 

  18. Sheldrick GM (1997) SHELXL97, program for crystal structure refinement. University of Göttingen, Germany

    Google Scholar 

  19. Moore PB (1965) Am Mineral 50:1884–1892

    CAS  Google Scholar 

  20. Aranda MAG, Bruque S, Attfield JP (1991) Inorg Chem 30:2043

    Article  CAS  Google Scholar 

  21. Aranda MAG, Bruque S (1990) Inorg Chem 29:1334

    Article  CAS  Google Scholar 

  22. Singh K, Band SA, Kinge WK (2004) Ferroelectrics 306:179

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Belfguira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belfguira, N., Walha, S., Kabadou, A. et al. Hydrothermal Synthesis and Structure of the Solid Solution (Fe0.54Mn0.46)(PO4)⋅2H2O. J Chem Crystallogr 41, 370–374 (2011). https://doi.org/10.1007/s10870-010-9891-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9891-7

Keywords

Navigation