Skip to main content
Log in

Supramolecular Architecture via Self-Complementary Amide Hydrogen Bonding in [Ag(pia)2](NO3)·H2O: Synthesis, Thermal and Structural Studies

  • ORIGINAL PAPER
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis, thermal and spectral characterization and crystal structure of silver(I) complex with picolinamide, [Ag(C6H6N2O)2](NO3)·H2O, are reported. The silver(I) atom is chelated by two picolinamide (pia) ligands in approximately square planar geometry. The distortion within the coordination environment is mainly imposed by formation of the chelate rings, but it is also observed in two longer (Ag–O) and two shorter (Ag–N) bond lengths. The compound crystallizes in the triclinic space group \(P\bar{1}\) with a = 7.1265(2) Å, b = 8.9157(4) Å, c = 12.9527(4) Å, α = 83.934(3)°, β = 86.094(2)°, γ = 67.023(3)° and Z = 2. Cationic complexes are linked through amide–amide hydrogen bonds of ‘head-to-head’ R 22 (8) motif leading to infinite chains, while nitrate anions and H2O molecules act only as a cross-link between such four symmetry related cationic chains via hydrogen bonds forming 2D supramolecular double sheets. Therefore, the ‘head-to-head’ amide interactions in [Ag(C6H6N2O)2](NO3)·H2O are robust enough to accommodate the usually disruptive NO3 anion and H2O molecule and could be regarded as a tool for controlling the assembly of this silver complex.

Index Abstract

Square planar silver(I) complex with picolinamide, [Ag(pia)2]+, propagates through self-complementary amide hydrogen bonds, forming a supramolecular chain structure. The amide–amide interactions are robust enough to accommodate the usually disruptive NO 3 anion and H2O molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3

Similar content being viewed by others

References

  1. Brammer L, Burgard MD, Eddleston MD, Rodger CS, Rath NP, Adams H (2002) CrystEngComm 4:239

    Article  CAS  Google Scholar 

  2. Brammer L (2004) Chem Soc Rev 33:476

    Article  CAS  Google Scholar 

  3. Young G, Hanton LR (2008) Coord Chem Rev 252:1346

    Article  CAS  Google Scholar 

  4. Đaković M, Popović Z (2007) Acta Crystallogr C63:m507

    Google Scholar 

  5. Đaković M, Popović Z (2008) Acta Crystallogr E64:m311

    Google Scholar 

  6. Đaković M, Popović Z, Giester G, Rajić-Linarić M (2008) Polyhedron 27:210

    Article  Google Scholar 

  7. Đaković M, Jagličić Z, Kozlevčar B, Popović Z (2010) Polyhedron 29:1910

    Article  Google Scholar 

  8. Oxford Diffraction, 2004. Oxford Diffraction Ltd., Xcalibur CCD System, CrysAlis Software System, Version 171.31

  9. Sheldrick GM (2008) Acta Crystallogr A64:112

    CAS  Google Scholar 

  10. Farrugia LJ, ORTEP-3 (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  11. Bruno IJ, Cole JC, Edgington PR, Kessler MK, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Crystallogr B58:389

    CAS  Google Scholar 

  12. Bakiler M, Bolukbasi O, Yilmaz A (2007) J Mol Struct 826:6

    Article  CAS  Google Scholar 

  13. Akalin E, Akyuz S (2006) Vib Spectrosc 42:333

    Article  CAS  Google Scholar 

  14. Nakamoto K (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York

    Google Scholar 

  15. Constable EC, Housecroft CE, Kariuki BM, Kelly N, Smith CB (2002) Inorg Chem Commun 5:199

    Article  CAS  Google Scholar 

  16. Muthu S, Yip JHK, Vittal JJ (2001) J Chem Soc Dalton Trans 3577

  17. Chen XD, Mak TCW (2005) J Mol Struct 748:183

    Article  CAS  Google Scholar 

  18. Deloume JP, Faure R, Loiseleur H (1997) Acta Crystallogr B33:2709

    Google Scholar 

  19. Drew MGB, Naskar JP, Choedhury S, Datta D (2005) Eur J Inorg Chem 23:4834

    Article  Google Scholar 

  20. Bowmaker GA, Effendy, Nitiatmodjo M, Skelton BW, White AH (2005) Inorg Chim Acta 358:4327

    Article  CAS  Google Scholar 

  21. Allen HF, Motherwell WDS (2002) Acta Crystallogr B58:380

    CAS  Google Scholar 

  22. Beatty AM (2003) Coord Chem Rev 246:131

    Article  CAS  Google Scholar 

  23. Aakeröy CB, Beatty AM, Desper J, O’Shea M, Valdés-Martínez J (2003) J Chem Soc Dalton Trans 3956

  24. Aakeröy CB, Beatty AM (1998) Cryst Eng 1:39

    Article  Google Scholar 

  25. Sieron L, Bukowska-Strzyzewska M (1999) Acta Crystallogr C55:491

    CAS  Google Scholar 

  26. Mad’arova M, Sivak M, Kuchta L, Marek J, Benko J (2004) J Chem Soc Dalton Trans 20:3313

    Google Scholar 

  27. Đaković M, Popović Z (2007) Acta Crystallogr C63:m557

    Google Scholar 

Download references

Acknowledgments

The research was supported by Ministry of Science, Education and Sport of the Republic of Croatia, Zagreb (Grant no. 119-1193079-1332).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marijana Đaković or Zora Popović.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Đaković, M., Benko, M. & Popović, Z. Supramolecular Architecture via Self-Complementary Amide Hydrogen Bonding in [Ag(pia)2](NO3)·H2O: Synthesis, Thermal and Structural Studies. J Chem Crystallogr 41, 343–348 (2011). https://doi.org/10.1007/s10870-010-9885-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9885-5

Keywords

Navigation