Skip to main content
Log in

Crystal Structure of a Trinuclear Mercury(II) Cyanide Complex of Tetramethylthiourea, [{(Tetramethylthiourea)2Hg(CN)2}2·Hg(CN)2]

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The title compound was prepared by reacting mercury(II) cyanide and tetramethylthiourea (Tmtu) in the molar ratio of 1:1.75. It was characterized by IR and NMR (1H and 13C) spectroscopy, and X-ray crystallography. The appearance of a band around 2,200 cm−1 in IR and a resonance around 145 ppm in 13C NMR indicated the binding of cyanide to mercury(II). The crystal structure of the title complex, [{(tetramethylthiourea)2Hg(CN)2}2·Hg(CN)2] (1) consists of two independent [(Tmtu)2Hg(CN)2] moieties bridged by a Hg(CN)2 unit. The mercury atom in [(Tmtu)2Hg(CN)2] unit is coordinated to two thione sulfur atoms of Tmtu and to two cyanide carbon atoms in a distorted tetrahedral mode.

Graphical Abstract

The title compound, [{(tetramethylthiourea)2Hg(CN)2}2·Hg(CN)2] (1) was prepared by reacting mercury(II) cyanide and tetramethylthiourea (Tmtu) in the molar ratio of 1.75:1. It was characterized by IR and NMR (1H and 13C) spectroscopy, and x-ray crystallography. The appearance of a band around 2200 cm−1 in IR and a resonance around 145 ppm in 13C NMR indicated the binding of cyanide to mercury(II). The crystal structure of the complex consists of two independent [(Tmtu)2Hg(CN)2] moieties bridged by a Hg(CN)2 unit. The mercury atom in [(Tmtu)2Hg(CN)2] unit is coordinated to two thione sulfur atoms of Tmtu and to two cyanide carbon atoms in a distorted tetrahedral mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Mahmoudi G, Morsali A, Zhu L (2007) Polyhedron 26:2885–2893

    Article  CAS  Google Scholar 

  2. Mahmoudi G, Morsali A, Zeller M (2009) Inorg Chim Acta 362:217

    Article  CAS  Google Scholar 

  3. Patra GK, Goldberg I (2002) Polyhedron 21:2195–2199

    Article  CAS  Google Scholar 

  4. Bebout DC, Garland MM, Murphy GS, Bowers EV, Abelt CJ, Butcher RJ (2003) Dalton Trans 12:2578–2584

    Google Scholar 

  5. Bebout DC, Ehmann DE, Trinidad JC, Crahan KK, Kastner ME, Parrish DA (1997) Inorg Chem 36:4257–4264

    Article  CAS  Google Scholar 

  6. Porzsolt E, Beck MT, Bitto A (1976) Inorg Chim Acta 19:173–179

    Article  CAS  Google Scholar 

  7. Cingolani A, Lorenzotti A, Leonesi D, Bonati F (1984) Inorg Chim Acta 81:127–132

    Article  CAS  Google Scholar 

  8. Freire E, Baggio S, Baggio R, Suescun L (1999) J Chem Crystallogr 29:825–830

    Article  CAS  Google Scholar 

  9. Lobana TS, Paul S, Castineiras A (1999) J Chem Soc Dalton Trans 1819–1824

  10. Hadjikakou SK, Kubicki M (2000) Polyhedron 19:2231–2236

    Article  CAS  Google Scholar 

  11. Bell NA, Coles SJ, Constable CP, Hursthouse MB, Light ME, Mansor R, Salvin NJ (2002) Polyhedron 21:1845–1855

    Article  CAS  Google Scholar 

  12. Bell NA, Coles SJ, Hursthouse MB, Light ME, Malik KA, Mansor R (2000) Polyhedron 19:1719–1726

    Article  CAS  Google Scholar 

  13. Lobana TS, Sandhu MK, Snow MR, Tiekink ERT (1988) Acta Crystallogr C 44:179–181

    Article  Google Scholar 

  14. Geol RG, Henry WP, Ogini WO (1979) Can J Chem 57:762–766

    Article  Google Scholar 

  15. Raper ES (1996) Coord Chem Rev 153:199

    Article  CAS  Google Scholar 

  16. Akrivos PD (2001) Coord Chem Rev 213:181

    Article  CAS  Google Scholar 

  17. Bell NA, Branston TN, Clegg W, Parker L, Raper ES, Sammon C, Constable CP (2001) Inorg Chim Acta 319:130–136

    Article  CAS  Google Scholar 

  18. Devillanova FA, Isaia F, Verani G, Hussein A (1986) J Coord Chem 14:249–257

    Article  CAS  Google Scholar 

  19. Bellon PL, Demartin F, Devillanova FA, Isaia F, Verani G (1988) J Coord Chem 18:253–261

    Article  CAS  Google Scholar 

  20. Cristiani F, Demartin F, Devillanova FA, Diaz A, Isaia F, Verani G (1990) J Coord Chem 21:137–146

    Article  CAS  Google Scholar 

  21. Zhang Y-M, Yang L-Z, Lin Q, Wei T-B (2005) J Coord Chem 58:1675–1679

    Article  CAS  Google Scholar 

  22. Estevez-Hernandez O, Otazo-Sanchez E, de Hidalgo-Hidalgo Cisneros JL, Naranjo-Rodriguez I, Reguera E (2006) Spectrochim Acta Part A 64:961–971

    Article  CAS  Google Scholar 

  23. Popovic Z, Soldin Z, Pavlovic G, Matkovic-Calogovic D, Mrvos-Sermek D, Rajic M (2002) Struct Chem 13:425–436

    Article  CAS  Google Scholar 

  24. Bell NA, Coles SJ, Constable CP, Hibbs DE, Hursthouse MB, Mansor R, Raper ES, Sammon C (2001) Inorg Chim Acta 323:69–77

    Article  CAS  Google Scholar 

  25. Lobana TS, Sharma R, Sharma R, Sultana R, Butcher RJ (2008) Z Anorg Allg Chem 634:718–723

    Article  CAS  Google Scholar 

  26. Pavlovic G, Popovic Z, Solden Z, Matkovic-Calogovic D (2000) Acta Crystallogr C 56:801–803

    Article  Google Scholar 

  27. Matkovic-Calogovic D, Popovic Z, Pavlovic G, Solden Z, Giester G (2001) Acta Crystallogr C 57:409–411

    Article  CAS  Google Scholar 

  28. Yousaf MSM, Yamin BM, Kassim MB (2004) Acta Crystallogr E 60:m98–m99

    Article  Google Scholar 

  29. Ahmad S, Sadaf H, Akkurt M, Sharif S, Khan IU (2009) Acta Crystallogr E 65:m1191–m1192

    Article  CAS  Google Scholar 

  30. Isab AA, Wazeer MIM (2005) J Coord Chem 58:529–537

    Article  CAS  Google Scholar 

  31. Isab AA, Perzanowski HP (1990) J Coord Chem 21:247–252

    Article  CAS  Google Scholar 

  32. Isab AA, Perzanowski HP (1996) Polyhedron 14:2397–2401

    Article  Google Scholar 

  33. Wazeer MIM, Isab AA (2007) Spectrochim Acta A 68:1207–1212

    Article  Google Scholar 

  34. Raper ES, Creighton JR, Bell NA, Clegg W, Curcurull-Sanchez L (1998) Inorg Chim Acta 277:14–20

    Article  CAS  Google Scholar 

  35. Popovic Z, Pavlovic G, Matkovic-Calogovic D, Soldin Z, Rajic M, Vikic-Topic D, Kovacek D (2000) Inorg Chim Acta 306:142–152

    Article  CAS  Google Scholar 

  36. Pavlovic G, Popovic Z, Soldin Z, Matkovic-Calogovic D, Pavlovic G, Rajic M, Giester G (2002) Eur J Inorg Chem 171–180

  37. Bell NA, Branston TN, Clegg W, Creighton JR, Cucurull-Sa’nchez L, Elsegood MRJ, Raper ES (2000) Inorg Chim Acta 303:220–227

    Article  CAS  Google Scholar 

  38. Popovic Z, Matkovic-Calogovic D, Soldin Z, Pavlovic G, Davidovic N, Vikic-Topic D (1999) Inorg Chim Acta 294:35–46

    Article  CAS  Google Scholar 

  39. Pavlovic G, Popovic Z, Soldin Z, Matkovic-Calogovic D (2000) Acta Crystyllogr C 56:61–63

    Article  Google Scholar 

  40. Wu Z-Y, Xu D-J, Hung C-H (2004) J Coord Chem 57:791–796

    Article  CAS  Google Scholar 

  41. Hanif M, Ahmad S, Altaf M, Stoeckli-Evans H (2007) Acta Crystallogr E 63:m2594

    Article  CAS  Google Scholar 

  42. Ahmad S, Isab AA, Ashraf W (2002) Inorg Chem Comm 5:816–819

    Article  CAS  Google Scholar 

  43. Ashraf W, Ahmad S, Isab AA (2002) Transition Met Chem 29:400–404

    Article  Google Scholar 

  44. Ahmad S, Isab AA, Perzanowski HP (2002) Can J Chem 80:1279–1284

    Article  CAS  Google Scholar 

  45. Ahmad S, Isab AA (2001) Inorg Chem Commun 4:362–364

    Article  CAS  Google Scholar 

  46. Ahmad S (2004) Coord Chem Rev 248:231–243

    Article  CAS  Google Scholar 

  47. Stoe & Cie (2005) X-Area V1.26 & X-RED32 V1.26 Software, Stoe & Cie GmbH, Darmstadt, Germany

  48. Sheldrick GM (2008) Acta Crystallogr A 64:112–122

    Article  CAS  Google Scholar 

  49. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  50. Isab AA, Al-Arfaj AR, Arab M, Hassan MM (1994) Transition Met Chem 19:87–90

    CAS  Google Scholar 

  51. Nadeem S, Rauf MK, Ahmad S, Ebihara M, Tirmizi SA, Bashir SA, Badshah A (2009) Transition Met Chem 34:197–202

    Article  CAS  Google Scholar 

  52. Ahmad S, Isab AA, Arab M (2002) Polyhedron 21:1267–1271

    Article  Google Scholar 

  53. Sharpe AG (1976) The chemistry of cyano complexes of the transition metals. Academic Press Inc, London, p 272

    Google Scholar 

  54. Flower KR, Pritchard RG (2006) Acta Crystallogr E 62:m1467–m1468

    Article  CAS  Google Scholar 

  55. Seccombe RC, Kennard CHL (1969) J Organomet Chem 18:243–247

    Article  CAS  Google Scholar 

  56. Costero AM, Monrabal E, Andreu C, Martinez-Manez R, Soto J, Padilla-Tosta M, Pardo T, Ochando LE, Amigo JM (2000) J Chem Soc Dalton Trans 361–367

  57. Sum Formula for 2; C12H28HgN6O2S2; Mr = 535.12; Monoclinic; Space group; P21, a = 10.1610(15), b = 7.9755(8), c = 15.122(2) Å; β = 92.480(13)˚; R int = 0.1393; R 1 = 0.0825 (for 2021 observed reflection [I > 2σ(I)]). Overall poor quality of crystal does not allow publishing this structure

  58. Sum Formula for 3; C28H56Hg4N16O4S4; Mr = 1571.46; Monoclinic; Space group; P21/c, a = 11.4369(18), b = 8.0571(9), c = 10.5338(18) Å; β = 109.088(11)˚; R int = 0.2600; R 1 = 0.1493 (for 2845 observed reflection [I > 2σ(I)]). Overall poor quality of crystal does not allow publishing this structure

Download references

Acknowledgments

Financial support from Pakistan Council for Science and Technology Islamabad, Pakistan, and from King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia, Dhahran, Saudi Arabia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Ahmad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altaf, M., Stoeckli-Evans, H., Ahmad, S. et al. Crystal Structure of a Trinuclear Mercury(II) Cyanide Complex of Tetramethylthiourea, [{(Tetramethylthiourea)2Hg(CN)2}2·Hg(CN)2]. J Chem Crystallogr 40, 1175–1179 (2010). https://doi.org/10.1007/s10870-010-9818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-010-9818-3

Keywords

Navigation