Skip to main content
Log in

Synthesis and Characterization of Some Transition Metal Complexes with Mixed Adenine and Acetylacetonate Ligands: Crystal Structures of Solvated Complex {[Cu(acac)2(adenine)]·EtOH} and {[Cu(acac)2(adenine)]·DMF·H2O}

  • ORIGINAL PAPER
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Metal complexes of divalent copper (1–2), cobalt (3), and nickel (4) with mixed ligands acetylacetone (acac) and adenine were prepared and characterized by IR, mass spectra, elemental and thermal analysis. The X-ray crystal structures of {[Cu(acac)2(adenine)]·EtOH} complex (1) and {[Cu(acac)2(adenine)]·DMF·H2O} (2) were determined. Compound (1) crystallizes in the triclinic space group P  1 with a = 7.547(3) Å, b = 7.828(3) Å, c = 17.791(6) Å, α = 79.538(6)°, β = 82.240(7)°, γ = 86.010(6)°, V = 1023.1(6) Å3, and Z = 2. Complex (1) forms a hydrogen bonded 2:2 complex {[Cu(acac)2(adenine)]2:[EtOH]2} arranged in bilayers. Complex (2) crystallizes in the triclinic space group P  1 with a = 7.828(2) Å, b = 8.095(2) Å, c = 16.995(5) Å, α = 78.508(5)°, β = 84.949(5)°, γ = 89.285(5)°, V = 1051.2(5) Å3, and Z = 2. Complex (2) also forms bilayers with H-bonded DMF. Thermal analysis TG and DSC of the compounds (25–800 °C, under N2) reveals the disproportionation of ligands with the associated heat.

Graphical Abstract

Metal complexes of divalent copper, cobalt, and nickel with mixed ligands acetylacetone (acac) and adenine were prepared and characterized by IR, mass spectra, elemental and thermal analysis. The X-ray crystal structures of {[Cu(acac)2(adenine)]·EtOH} complex (1) and {[Cu(acac)2(adenine)]·DMF·H2O} (2) were determined. Complex (1) forms a hydrogen bonded 2:2 complex {[Cu(acac)2(adenine)]2:[EtOH]2} arranged in bilayers. Complex (2) also forms bilayers with H-bonded DMF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Salam MA, Aoki K (2001) Inorg Chim Acta 314:71

    Article  CAS  Google Scholar 

  2. Eichhorn GL (1973) Inorganic biochemistry. In: Eichhron GL (ed) Elsevier, Amsterdam, Chapters 33 and 34

  3. Marzilli LG (1977) Prog Inorg Chem 23:255

    Article  CAS  Google Scholar 

  4. Hodgson DJ (1977) Prog Inorg Chem 23:211

    Article  CAS  Google Scholar 

  5. Sorrell T, Epps LA, Kistenmacher TJ, Marzilli LGJ (1978) Am Chem Soc 100:18

    Article  Google Scholar 

  6. Marzilli LG, Kistenmacher TJ (1977) Acc Chem Res 10:146

    Article  CAS  Google Scholar 

  7. Garcia-Teran JP, Castillo O, Luque A, Garcia-Couceiro U, Roman P, Lloret FJ (2004) Inorg Chem 43:5761

    Article  CAS  Google Scholar 

  8. Morel AC, Choquesillo-Lazarte D, Alarcon-Payer DC, Gonzalez-Perez JM, Castineiras A, Nicolas-Gutierrez JJ (2003) Inorg Chem Comm 6:1354

    Article  CAS  Google Scholar 

  9. Serrano-Padial E, Choquesillo-Lazarte D, Bugella-Altamirano E, Castineiras A, Carballo R, Gutierrez NJ (2002) Polyhedron 21:1451

    Article  CAS  Google Scholar 

  10. Cleland WW (1978) Abstracts, 12th Middle Atlantic regional meeting of the American Chemical Society, April 5–7, paper 23

  11. Baruah H, Barry CG, Bierbach U (2004) Curr Topics Med Chem 4:1537

    Article  CAS  Google Scholar 

  12. Cochran W (1951) Acta Cryst 4:81

    Article  CAS  Google Scholar 

  13. Kistenmacher JT (1973) Acta Cryst B29:1974

    Google Scholar 

  14. Hodgson JD (1977) Prog Inorg Chem 23:210

    Google Scholar 

  15. Marzotto A, Ciccarese A, Clemente DA, Valle G (1995) J Chem Soc Dalton Trans, 1461

  16. Brown DB, Hall JW, Helis HM, Walton EG, Hodgson DJ, Halfield WE (1977) Inorg Chem 16(11):2675

    Article  CAS  Google Scholar 

  17. Sanchez-Moreno MJ, Choquesillo-Lazarte D, Gonzalez-Perez JM, Carballo R, Castineiras A, Nicolas-Gutierrez JJ (2002) Inorg Chem Comm 5:800

    Article  CAS  Google Scholar 

  18. Wang SM, Li NCJ (1965) Am Chem Soc 88:4592

    Article  Google Scholar 

  19. Taquikhan MM, Satyanarayana S (1982) Indian J Chem 21A:197

    Google Scholar 

  20. Taquikhan MM, Jyoti MS (1977) Indian J Chem 15A:1002

    Google Scholar 

  21. Taquikhan MM, Reddy PR, Reddy KVJ (1979) Inorg Nucl Chem 41:423

    Article  Google Scholar 

  22. Ghose R, Dey AK (1980) Rev Chim Minerale 17:492

    CAS  Google Scholar 

  23. Ghose RA, Ghose K, Dey AKJ (1980) Ind Chem Soc 47:929

    Google Scholar 

  24. Ghose R, Chattopadhyaya MC, Dey AK (1980) Indian J Chem 19A:783

    CAS  Google Scholar 

  25. Ghose R, Chattopadhyaya MC, Dey AK (1980) Proc Ind Natl Sci Acad 46:436

    Google Scholar 

  26. Nigam NB, Sinha PC, Srivastava MN (1983) Indian J Chem 22A:818

    CAS  Google Scholar 

  27. Nigam NB, Sinha PC, Gupta M, Srivastava MN (1985) Indian J Chem 24A:893

    CAS  Google Scholar 

  28. Tadao F, Takcichi S (1977) Chem Pharm Bull 25:1055

    Google Scholar 

  29. Gupta M, Srivastava MN (1992) Bull Pol Acad Sci Chem 40((4):277

    CAS  Google Scholar 

  30. Ilavarasi RM, Rao NS, Udupa MR (1997) Proc Indian Acad Sci 109:79

    CAS  Google Scholar 

  31. Sakaguchi H, Anazai H, Furuhata K, Ogura H, Litaka Y, Fujita T, Sakaguchi T (1978) Chem Pharm Bull 26:2456

    Google Scholar 

  32. Terzis A, Beauchamp AL, Rivest R (1973) Inorg Chem 12:1166

    Article  CAS  Google Scholar 

  33. De Meester P, Skapski AC (1971) J Chem Soc A:2167

    Google Scholar 

  34. Bugella-Altamirano E, Choqesillo-Lazarte D, Gonzalez-Perez JM, Sanchez-Moreno MJ, Marin-Sanchez R, Martin-Ramos JD, Covelo B, Carballo R, Castineiras A, Gutierrez NJ (2002) Inorg Chim Acta 339:160

    Article  CAS  Google Scholar 

  35. Si H (1999) Handbook of chemical products. Chemical Industry Publishing House, Beijing, p 158

    Google Scholar 

  36. Nakamor T, Abe H, Kanamori T, Shibata S (1988) Jpn J Appl Phys 27:1265

    Article  Google Scholar 

  37. Xie MH, Qian CT, Gao LJ, Sun J, Chin JJ (2000) Struct Chem 19:419

    CAS  Google Scholar 

  38. Panson AJ, Charles RG, Schmidt DN, Szedon JR, Machito GJ, Braginski AI (1988) Appl Phys Lett 53:1756

    Article  CAS  Google Scholar 

  39. Donald CB, Masihul HB, Michael H, Majid M, Omar FZ, Robin GP, John OW (1992) J Chem Soc Chem Commun, 575

  40. Smith ME, Andersen RAJ (1996) Am Chem Soc 118:11119

    Article  CAS  Google Scholar 

  41. Silvana CN, Kulbinder KB, Paul JT, John TW (2002) Polyhedron 21:1289

    Article  Google Scholar 

  42. Zhu WG, Qing J, Lu ZY, Wei XQ, Xie MG (2000) Thin Solid Films 363:167

    Article  CAS  Google Scholar 

  43. Chifotides HT, Dunbar KR, Matonic JH (1992) Inorg Chem 31:4628

    Article  CAS  Google Scholar 

  44. Catalan KV, Mindiola DJ, Ward DL, Dunbar KR (1997) Inorg Chem 36:2458

    Article  CAS  Google Scholar 

  45. Catalan KV, Hess JS, Maloney MM, Mindiola DJ, Ward DL, Dunbar KR (1999) Inorg Chem 38:3904

    Article  CAS  Google Scholar 

  46. Prater ME, Mindiola DJ, Ouyang X, Dunbar KR (1998) Inorg Chem Comm 1:475

    Article  CAS  Google Scholar 

  47. Dunbar KR, Matonic JH, Saharan VP, Crawford CA, Christou GJ (1994) Am Chem Soc 116:2201

    Article  CAS  Google Scholar 

  48. Gangopadbyay S, Gangopadbyay PK (1997) J Inorg Biochem 66:175

    Article  Google Scholar 

  49. Kham BT, Kumari SV, Gond SN (1982) Indian J Chem Sect. A 21(3):264

    Google Scholar 

  50. Sigel RO, Thompson SM, Freisinger E, Glahe F, Lippert B (2001) Chem Euro J 7(9):1968

    Article  CAS  Google Scholar 

  51. Usta J, Nemer G, Sawma W, Touma J, Barnabe Bou-Mouglabey PY, Ghannoum A, Hammud H (2006) Abstracts/Toxicology 226:52

    Google Scholar 

  52. BTS and UKEMS joint Congress Conference (2006) University of Warwick 19–22 March, Warwick, UK

  53. Hammud H, Nemer G, Sawma W, Touma J, Barnabe P, Bou-Mouglabey Y, Ghannoum A, El-Hajjar J, Usta J (2008) Chem Biol Interact 173((2):84–96

    Article  CAS  Google Scholar 

  54. Zhou XF, Han AJ, Chu DB, Huang ZX (2001) Acta Cryst E57:506

    Google Scholar 

  55. Burgess J, Fawcett J, Russell D, Gilani S (2000) Acta Cryst C56:649

    CAS  Google Scholar 

  56. Mehrotra R, Bohra R, Gaur D (1978) Metal-diketonates and allied derivatives. Academic Press, New York

    Google Scholar 

  57. Qu Y, Zhu H, You Z, Tan M (2004) Molecules 9:949

    Article  CAS  Google Scholar 

  58. Hirozo K, Yoshihiko S, Hisao KJ (1953) Inst Polytech 4:43

    Google Scholar 

  59. Rattanaphani V, Montri LJ (1987) Fac Sci CMU 5:5

    Google Scholar 

  60. Turova N, Turevskaya E, Kessler V, Yanovskaya M (2002) The chemistry of metal alkoxides. Kluwer AP, Boston

    Google Scholar 

  61. Kistenmacher T, Marzilli L, Szalda D (1976) Acta Cryst B32:186

    CAS  Google Scholar 

  62. Sletten E, Thorstensen B (1974) Acta Cryst B30:2438

    Google Scholar 

  63. Sletten E, Ruud M (1975) Acta Cryst B31:982

    CAS  Google Scholar 

  64. Solans X, Ramirez L, Gasque L, Brianso J (1987) Acta Cryst C43:428

    CAS  Google Scholar 

  65. Rojas-Gonzalez PX, Castineiras A, Gonzalez-Perez JM, Choquesillo-Lazarte D, Niclos-Gutierrez (2002) J Inorg Chem 41: 6190

    Google Scholar 

  66. Sletten E (1969) Acta Cryst B 25:1480

    Article  CAS  Google Scholar 

  67. Gasque L, Esparza R, Molins E, Penalva J, Ramirez L, Dickinson G (1999) Acta Cryst C55:158

    CAS  Google Scholar 

  68. Heldal H, Sletten J (1997) Acta Chem Scand 51:122

    Article  CAS  Google Scholar 

  69. Meester P, Skapski AJ (1973) Chem Soc Dalton Trans 15:1596

    Article  Google Scholar 

  70. Ghose R (1992) Synth React Inorg Met Org Chem 22(4):379

    Article  CAS  Google Scholar 

  71. Somasundaram I, Palaniandavar M (1993) Indian J Chem 32A:495

    CAS  Google Scholar 

  72. Singh R, Tyagi S, Singh S, Singh SM, Singh UP (2002) Synth React Inorg Met Org Chem 32(5):853

    Article  CAS  Google Scholar 

  73. Masoud MS, Soayed AA, Ali AE (2004) Spectrochimica Acta 60:1907

    Article  Google Scholar 

  74. Shirotake S (1980) Chem Pharm Bull 28:1673

    CAS  Google Scholar 

  75. Savoic R, Jutier JJ, Prizant L, Beauchamp AL (1982) Spectro Chim Acta 38:561

    Article  Google Scholar 

  76. Brigando J, Colitis D, Morel M (1969) Bull Soc Chem Fr 3445:3449

    Google Scholar 

  77. Speca AN, Mikulshi CM, Iaconianni FJ, Pytlewski LL, Karayannies NMJ (1981) Inorg Nucl Chem 43:2771

    Article  CAS  Google Scholar 

  78. Speca AN, Pytlewski LL, Mikulski CM, Karayanni NM (1982) Inorg Chim Acta 66:153

    Article  Google Scholar 

  79. Lautie A, Novak AJ (1968) Chem Biol 65:1359

    CAS  Google Scholar 

  80. George TA, Hammud HH, Isber S (2006) Polyhedron 25:2721

    Article  CAS  Google Scholar 

  81. Zaworotko MJ, Hammud HH, Kravtsov VCH (2007) J Chem Cryst 27:219

    Article  Google Scholar 

Download references

Acknowledgments

Thermal analyzer at BAU is provided by FP 6 European Commission Grants “MEDINDUS” Contract # 509159. Thanks to University of South Florida, Tampa for X-ray facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan H. Hammud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaworotko, M.J., Hammud, H.H., Kabbani, A. et al. Synthesis and Characterization of Some Transition Metal Complexes with Mixed Adenine and Acetylacetonate Ligands: Crystal Structures of Solvated Complex {[Cu(acac)2(adenine)]·EtOH} and {[Cu(acac)2(adenine)]·DMF·H2O}. J Chem Crystallogr 39, 853–863 (2009). https://doi.org/10.1007/s10870-009-9575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9575-3

Keywords

Navigation