Skip to main content
Log in

Spectroscopic and X-ray Diffraction Data on Three Novel Trimetallic Clusters from Thermally Promoted Ligand Substitution in the Tetrahedrane Clusters MeCCo2MoCp(CO)8 and PhCCo2Mo(η5-C5H4CHO)(CO)8

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The reaction between the ethylidyne-substituted cluster MeCCo2MoCp(CO)8 (1) and the diphosphine ligand 2,3-bis(diphenylphosphino)maleic anhydride (bma) in refluxing CH2Cl2 has been investigated and found to afford the new mixed-metal clusters MeCCo2MoCp(CO)6[trans-2,3-bis(diphenylphosphino)succinic anhydride] (2) and Co2MoCp(CO)5[μ-C(Me)C=C(PPh2)C(O)OC(O)](μ-PPh2) (3), with the latter cluster representing the principal reaction product. Refluxing 1 with bma in either 1,2-dichloroethane or toluene yields only 3. The tetrahedrane cluster PhCCo2Mo(η5-C5H4CHO)(CO)8 (4), which contains a formyl-substituted cyclopentadienyl ring, has also been examined with added bma in refluxing CH2Cl2 and found to give only Co2Mo(η5-C5H4CHO)(CO)5[μ-C(Ph)C=C(PPh2)C(O)OC(O)](μ-PPh2) (5). All three products have been isolated and characterized spectroscopically in solution, and each molecular structure has been determined by X-ray crystallography. Cluster 2 contains a bridging diphosphine ligand with a succinic anhydride ring that results from the formal reduction of the maleic anhydride platform of the bma ligand, while clusters 3 and 5 each exhibit triangular Co2Mo cores, whose one face is capped by a 6e- C(R)C=C(PPh2)C(O)OC(O) [where R = Me (3), Ph (5)] ligand. The observed substitution products are discussed as a function of the capping carbyne group, ancillary polyene ligand, and related derivatives prepared by our groups.

Graphical Abstract

Thermolysis of the mixed-metal cluster MeCCo2MoCp(CO)8 (1) with bma in CH2Cl2 furnishes the new clusters MeCCo2MoCp(CO)6[trans-2,3-bis(diphenylphosphino)succinic anhydride] (2) and Co2MoCp(CO)5[μ-C(Me)C=C(PPh2)C(O)OC(O)](μ-PPh2) (3) as the minor and major products, respectively. The reaction between bma and the related benzylidyne-capped cluster PhCCo2Mo(η5-C5H4CHO)(CO)8 (4), which contains a formyl-substituted cyclopentadienyl ring, has also been examined and found to afford only Co2Mo(η5-C5H4CHO)(CO)5[μ-C(Ph)C=C(PPh2)C(O)OC(O)](μ-PPh2) (5) in moderate yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Albano VG, Braga D, Ros R, Scrivanti A (1985) Chem Commun 866

  2. Bruce MI, bin Shawkataly O, Snow MR, Tiekink ERT (1986) Aust J Chem 39:1109

    CAS  Google Scholar 

  3. Yang K, Bott SG, Richmond MG (1993) J Organomet Chem 454:273

    Article  CAS  Google Scholar 

  4. Acum GA, Mays MJ, Raithby PR, Solan GA (1996) J Organomet Chem 508:137

    Article  CAS  Google Scholar 

  5. Choi YY, Wong WT (1997) J Organomet Chem 542:121

    Article  CAS  Google Scholar 

  6. Hui BKM, Wong WT (1998) J Chem Soc Dalton Trans 447

  7. Bott SG, Yang K, Huang SH, Richmond MG (2004) J Chem Crystallogr 34:883

    Article  CAS  Google Scholar 

  8. Watson WH, Wu G, Richmond MG (2005) Organometallics 24:5431

    Article  CAS  Google Scholar 

  9. Richmond MG, Kochi JK (1987) Organometallics 6:254

    Article  CAS  Google Scholar 

  10. Shiu KB, Peng SM, Cheng MC (1993) J Organomet Chem 453:133

    Article  CAS  Google Scholar 

  11. Farrugia LJ, McDonald N, Peacock RD (1994) J Cluster Sci 5:341

    Article  CAS  Google Scholar 

  12. Watson WH, Kandala S, Richmond MG (2005) J Chem Crystallogr 35:157

    Article  CAS  Google Scholar 

  13. Watson WH, Kandala S, Richmond MG (2006) J Chem Crystallogr 36:813

    Article  CAS  Google Scholar 

  14. Yang K, Smith JM, Bott SG, Richmond MG (1993) Organometallics 12:4779

    Article  CAS  Google Scholar 

  15. Xia CG, Yang K, Bott SG, Richmond MG (1996) Organometallics 15:4480

    Article  CAS  Google Scholar 

  16. Bott SG, Yang K, Talafuse KA, Richmond MG (2003) Organometallics 22:1383

    Article  CAS  Google Scholar 

  17. Bott SG, Yang K, Richmond MG (2005) J Organomet Chem 690:3067

    Article  CAS  Google Scholar 

  18. Bott SG, Yang K, Richmond MG (2006) J Organomet Chem 691:3771

    Article  CAS  Google Scholar 

  19. Zhang W, Watson WH, Richmond MG (2008) J Chem Crystallogr 38:437

    Article  CAS  Google Scholar 

  20. Seyferth D, Rudie CN, Merola JS (1978) J Organomet Chem 162:89

    Article  CAS  Google Scholar 

  21. Nestle MO, Hallgren JE, Seyferth D (1980) Inorg Synth 20:226

    Article  Google Scholar 

  22. Beurich H, Blumhofer R, Vahrenkamp H (1982) Chem Ber 115:2409

    Article  CAS  Google Scholar 

  23. Blumhofer R, Fischer K, Vahrenkamp H (1986) Chem Ber 119:194

    Article  CAS  Google Scholar 

  24. Jensen S, Robinson BH, Simpson J (1983) Chem Commun 1081

  25. Wu HP, Yin YQ, Huang XY (1997) Inorg Chim Acta 255:167

    Article  CAS  Google Scholar 

  26. Hart WP, Macomber DW, Rausch MD (1980) J Am Chem Soc 102:1196

    Article  CAS  Google Scholar 

  27. Fenske D, Becher HJ (1975) Chem Ber 119:2115

    Article  Google Scholar 

  28. Shriver DF (1969) The manipulation of air-sensitive compounds. McGraw-Hill, New York

    Google Scholar 

  29. SAINT Version 6.02, Bruker advanced analytical X-ray systems, Inc. Copyright 1997–1999

  30. SHELXTL Version 5.1, Bruker advanced analytical X-ray systems, Inc. Copyright 1998

  31. PLATON—a multipurpose crystallographic tool (2001) Spek AL, Utrecht University, Utrecht, The Netherlands

  32. Coltrup NB, Daly LH, Wiberly SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, New York

    Google Scholar 

  33. Avey A, Schut DM, Weakley TJR, Tyler DR (1993) Inorg Chem 32:233

    Article  CAS  Google Scholar 

  34. Shen H, Wang JC, Bott SG, Richmond MG (1997) J Chem Crystallogr 27:649

    Article  CAS  Google Scholar 

  35. Watson WH, Chen T, Richmond MG (2004) J Chem Crystallogr 34:797

    Article  CAS  Google Scholar 

  36. Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice-Hall, New Jersey

    Google Scholar 

  37. Beurich H, Vahrenkamp H (1982) Chem Ber 115:2385

    Article  CAS  Google Scholar 

  38. Shimomura H, Lei X, Shang M, Fehlner TP (1997) Organometallics 16:5302

    Article  CAS  Google Scholar 

  39. Zhang YH, Liu P, Xia CG, Hu B, Yin YQ (2003) J Organomet Chem 676:55

    Article  CAS  Google Scholar 

  40. Song LC, Zhu WF, Hu QM, Wu H, Yu GA (2003) J Organomet Chem 667:143

    Article  CAS  Google Scholar 

  41. Huang H, Hughes RP, Landis CR, Rheingold AL (2006) J Am Chem Soc 128:7454

    Article  CAS  Google Scholar 

  42. Adams H, Guio LVY, Morris MJ, Spey SE (2002) J Chem Soc Dalton Trans 2907

  43. Zhang J, Zhang YH, Chen XN, Ding ER, Yin YQ (2000) Organometallics 19:5032

    Article  CAS  Google Scholar 

  44. Sutin KA, Li L, Frampton CS, Sayer BG, McGlinchey MJ (1991) Organometallics 10:2362

    Article  CAS  Google Scholar 

  45. Lingham SL, Mays MJ, Raithby PR, Solan GA, Sundavadra BV, Conole G, Kessler M (1994) J Chem Soc Dalton Trans 3607

  46. Fenske D, Bensmann W (1985) Z Naturforsch B Chem Sci 40:1093

    Google Scholar 

  47. Bott SG, Yang K, Richmond MG (2004) J Organomet Chem 689:791

    Article  CAS  Google Scholar 

  48. Fenske D (1979) Chem Ber 112:363

    Article  CAS  Google Scholar 

  49. Lewis JS, Heath SL, Powell AK, Zweit J, Blower PJ (1997) J Chem Soc Dalton Trans 855

  50. Mao F, Philbin CE, Weakley TJR, Tyler DR (1990) Organometallics 9:1510

    Article  CAS  Google Scholar 

  51. Yang K, Bott SG, Richmond MG (1995) Organometallics 14:2387

    Article  CAS  Google Scholar 

  52. Orpen AG, Brammer L, Allen FH, Kennard O, Watson DG, Talyor R (1989) J Chem Soc Dalton Trans S1

  53. Richter F, Beurich H, Muller M, Gartner N, Vahrenkamp H (1983) Chem Ber 116:3774

    Article  CAS  Google Scholar 

  54. Kamiguchi S, Chihara T (2000) J Cluster Sci 11:483

    Article  CAS  Google Scholar 

  55. Curtis MD, Han KR, Butler WM (1980) Inorg Chem 19:2096

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the Robert A. Welch Foundation (Grants P-0074-WHW and B-1093-MGR) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William H. Watson or Michael G. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, W., Watson, W.H. & Richmond, M.G. Spectroscopic and X-ray Diffraction Data on Three Novel Trimetallic Clusters from Thermally Promoted Ligand Substitution in the Tetrahedrane Clusters MeCCo2MoCp(CO)8 and PhCCo2Mo(η5-C5H4CHO)(CO)8 . J Chem Crystallogr 39, 812–819 (2009). https://doi.org/10.1007/s10870-009-9573-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9573-5

Keywords

Navigation