Skip to main content
Log in

Supramolecular Aggregation Via Sb···S Interactions and O–H···O Hydrogen-bonding in Tris(N-methyl-N-2-hydroxyethyl)dithiocarbamato-S,S′)antimony(III) Methanol Solvate: Sb[S2CN(Me)(CH2CH2OH)]3 · MeOH

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The central antimony atom in Sb[S2CN(Me)CH2CH2OH]3 · MeOH is asymmetrically chelated by three dithiocarbamate ligands leading to a six-coordinate geometry that defines a distorted octahedron; the lone-pair of electrons projects out through the triangular face defined by the three sulphur atoms forming the longer Sb–S bonds. Centrosymmetrically related molecules associate via weak Sb···S interactions to form dimeric aggregates. The crystal packing is dominated by O–H···O interactions involving both the ethanol residues and solvent methanol molecules via a 16-membered [O–H···]8 ring. These extend in two dimensions to form a layer architecture. The compound crystallizes in the triclinic space group P-1 with a = 9.1917(10) Å, b = 9.5326(10) Å, c = 15.5448(17) Å, α = 69.038(14)°, β = 70.506(15)°, γ = 70.447(16)°, and Z = 2.

Index Abstract

Supramolecular aggregation via Sb···S interactions and O–H···O hydrogen-bonding in tris ( N -methyl- N -2-hydroxyethyl)dithiocarbamato-S,S′)antimony(III) methanol solvate: Sb[S 2 CN(Me)(CH 2 CH 2 OH)] 3  · MeOH

Edward R. T. Tiekink (1) * and David J. Young (2) *

Molecules associate into dinuclear aggregates via Sb···S interactions and these are connected into a two-dimensional architecture by O–H···O hydrogen-bonding interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heard PJ (2005) Prog Inorg Chem 53:1

    Article  CAS  Google Scholar 

  2. Hogarth G (2005) Prog Inorg Chem 53:71

    Article  CAS  Google Scholar 

  3. Garje SS, Jain VK (2003) Coord Chem Rev 236:35

    Article  CAS  Google Scholar 

  4. Buntine MA, Hall VJ, Kosovel FJ, Tiekink ERT (1998) J Phys Chem A 102:2472

    Article  CAS  Google Scholar 

  5. Cox MJ, Tiekink ERT (1999) Z Kristallogr 214:571

    Article  CAS  Google Scholar 

  6. Tiekink ERT (2002) Rigaku J 19:14

    CAS  Google Scholar 

  7. Tiekink ERT (2003) Acta Chim Slov 50:343

    CAS  Google Scholar 

  8. Benson RE, Ellis CA, Lewis CE, Tiekink ERT (2007) CrystEngComm 9:930

    Article  CAS  Google Scholar 

  9. Alcock NW (1972) Adv Inorg Chem Radiochem 15:1

    Article  CAS  Google Scholar 

  10. Haiduc I, Edelmann FT (1999) Supramolecular organometallic chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  11. Liu Y, Tiekink ERT (2005) CrystEngComm 7:20

    Article  CAS  Google Scholar 

  12. Willem R, Verbruggen I, Gielen M, Biesemans M, Mahieu B, Basu Baul TS, Tiekink ERT (1998) Organometallics 17:5758; Tiekink ERT (2003) CrystEngComm 5:101; Dakternieks D, Duthie A, Smyth DR, Stapleton CPD, Tiekink ERT (2003) Organometallics 22:4599; Lai CS, Liu S, Tiekink ERT (2004) CrystEngComm 6:221; Haiduc I, Tiekink ERT (2005) Prog Inorg Chem 54:127; Chen D, Lai CS, Tiekink ERT (2006) CrystEngComm 8:51; Tiekink ERT (2006) CrystEngComm 8:104

  13. Koh YW, Lai CS, Du AY, Tiekink ERT, Loh KP (2003) Chem Mater 15:4544

    Article  CAS  Google Scholar 

  14. Lai CS, Tiekink ERT (2007) Z Kristallogr 222:352

    Article  CAS  Google Scholar 

  15. Venkatachalam V, Ramalingam K, Castellato U, Graziani R (1997) Polyhedron 16:1211

    Article  CAS  Google Scholar 

  16. Tiekink ERT, Young DJ (2006) Acta Crystallogr E62:m1887

    CAS  Google Scholar 

  17. Venkatachalam V, Ramalingam K, Bocelli G, Cantoni A (1997) Inorg Chim Acta 261:23

    Article  CAS  Google Scholar 

  18. Low KY, Baba I, Farina Y, Othman AH, Ibrahim AR, Fun H-K, Ng SW (2001) Main Group Metal Chem 24:451

    CAS  Google Scholar 

  19. Nangia A (2006) Cryst Growth Des 6:1

    Article  CAS  Google Scholar 

  20. Higashi T (1995) ABSCOR. Rigaku Corporation, Tokyo, Japan

    Google Scholar 

  21. CrystalClear (2005) User manual. Rigaku/MSC Inc., Rigaku Corporation, The Woodlands, TX

    Google Scholar 

  22. Beurskens PT, Admiraal G, Beurskens G, Bosman WP, García-Granda S, Smits JMM, Smykalla C (1992) The DIRDIF program system. Technical Report of the Crystallography, Laboratory, University of Nijmegen, Nijmegen, The Netherlands

  23. Sheldrick GM (1997) SHELXL97. University of Göttingen, Germany

    Google Scholar 

  24. Johnson CK ORTEP II, Report ORNL-5136, Oak Ridge National Laboratory, Oak Ridge, TN, 1976

  25. Crystal Impact (2006) DIAMOND. Version 3.1c. Crystal Impact GbR, Postfach 1251, D-53002 Bonn, Germany

  26. teXsan, Structure Analysis Package, Molecular Structure Corporation, Houston, TX, 1992

  27. Spek AL (2005) PLATON, A multipurpose crystallographic tool. Utrecht University, Utrecht, The Netherlands

    Google Scholar 

Download references

Acknowledgments

We thank the Australian Academy of Science for funding to allow D.J.Y. to visit UTSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward R. T. Tiekink.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tiekink, E.R.T., Young, D.J. Supramolecular Aggregation Via Sb···S Interactions and O–H···O Hydrogen-bonding in Tris(N-methyl-N-2-hydroxyethyl)dithiocarbamato-S,S′)antimony(III) Methanol Solvate: Sb[S2CN(Me)(CH2CH2OH)]3 · MeOH. J Chem Crystallogr 38, 419–423 (2008). https://doi.org/10.1007/s10870-008-9330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-008-9330-1

Keywords

Navigation