Skip to main content
Log in

Influence of a Halide Ion on Ribbons of Water Pentamer

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Reactions of CuF2, CuCl2 · 2H2O and CuBr2 with 2,2′-dipyridylamine (HDPA) in water at room temperature using Cu:HDPA = 2:1 mol yield [Cu(HDPA)(H2O)2F]F · 3H2O (1), Cu(HDPA)Cl2 (2) and Cu(HDPA)Br2 (3) respectively. The structures of 2 and 3 are isostructural in spacegroup C2 with cell dimensions; for 2, a = 14.702(8), b = 7.726(2), c = 4.829(6) Å, β = 96.68(8)° and for 3, a = 14.2934(8), b = 7.9057(6), c = 5.1982(5) Å, β = 94.049(7)°. In the X-ray crystal structure, the complex 1 is found to contain tapes of water pentamers. Our DFT calculations at the B3LYP/LanL2DZ level show that the reaction Cu(HDPA)X2 + 2H2O = [Cu(HDPA)(H2O)2X]X is most exothermic in the gas phase when X = F, i.e., the tendency of water uptake is maximum for Cu(HDPA)F2. It seems that the exothermicities of the aquations of Cu(HDPA)Cl2 and Cu(HDPA)Br2 are not sufficient to stabilise the type of ribbons of water observed in 1 and consequently water is eschewed when X = Cl or Br.

Graphical Abstract

Cu(2,2′-dipyridylamine)X2 takes up water to produce ribbons of water pentamer, as shown in the accompanied picture (red: O atom of a solvent water molecule), only when X is F but not when it Cl or Br. The results are rationalised by means of DFT calculations at the B3LYP/LanL2DZ level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ludwig R (2001) Angew Chem Int Ed 40:1808

    Article  CAS  Google Scholar 

  2. Infantes L, Motherwell S (2002) Cryst Eng Comm 4:454

    CAS  Google Scholar 

  3. Infantes L, Chisholm J, Motherwell S (2003) Cryst Eng Comm 5:480

    CAS  Google Scholar 

  4. Mascal M, Infantes L, Chisholm J (2006) Angew Chem Int Ed 45:32

    Article  CAS  Google Scholar 

  5. Lakshminarayanan PS, Suresh E, Ghosh P (2006) Angew Chem Int Ed 45:3807

    Article  CAS  Google Scholar 

  6. Mir MH, Vittal J (2007) Angew Chem Int Ed 46:1

    Article  Google Scholar 

  7. Jin Y, Che Y, Batten SR, Chen P, Zheng J (2007) Eur J Inorg Chem 1925

  8. Naskar JP, Drew MGB, Hulme A, Tocher DA, Datta D (2005) Cryst Eng Comm 7:67

    CAS  Google Scholar 

  9. Zheng J, Batten SR, Du M (2005) Inorg Chem 44:3371

    Article  CAS  Google Scholar 

  10. CrysAlis v1 (2005) Oxford Diffraction Ltd. Oxford, UK

  11. Sheldrick GM, SHELXS-97, SHELXL-97 (1997) University of Göttingen, Göttingen: Germany

  12. ABSPACK (2005) Oxford Diffraction Ltd, Oxford, UK

  13. Drew MGB, Nag S, Datta D (2007) Inorg Chim Acta doi:10.1016/j.ica.2007.07.014

  14. Jacobson RA, Jensen WP (1981) Inorg Chim Acta 52:205

    Article  CAS  Google Scholar 

  15. Spodine E, Atria AM, Baggio R, Garland MT (1996) Acta Crystallogr C52:1407

    CAS  Google Scholar 

  16. Ray N, Tyagi S, Hathaway BJ (1982) Chem Soc Dalton Trans 143

  17. Banerjee K, De S, Datta DJ (2007) Chem Crystallogr 37:675

    Article  CAS  Google Scholar 

  18. Wales DJ, Walsh TRJ (1996) Chem Phys 105:6957

    Article  CAS  Google Scholar 

  19. Graf S, Mohr W, Leutwyler SJ (1996) Chem Phys 110:7893

    Google Scholar 

  20. Keutsch FN, Saykally (2001) RJ Proc Natl Acad Sci 98:10533

    Article  CAS  Google Scholar 

  21. Harker HA, Viant MR, Keutsch FN, Michael EA, McLaughlin RP, Saykally RJ (2005) J Phys Chem A109:6483

    Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman, Montgomery, JR, Vreven Jr, T, Kudin, KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota, K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels, AD, Strain, MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez.C, Pople JA Gaussian 03, Revision B.03, Gaussian, Inc., Pittsburgh PA, 2003

  23. Kabrede H, Hentschke RJ (2003) Phys Chem B107:3914

    Google Scholar 

  24. Miller Y, Fredj E, Harvey JN, Gerber RB (2004) J Phys Chem A108:4405

    Google Scholar 

  25. Maeda S, Ohno K (2007) J Phys Chem A111:4527

    Google Scholar 

Download references

Acknowledgments

We thank EPSRC and the University of Reading for funds for the X-Calibur system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipankar Datta.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drew, M.G.B., De, S. & Datta, D. Influence of a Halide Ion on Ribbons of Water Pentamer. J Chem Crystallogr 38, 495–499 (2008). https://doi.org/10.1007/s10870-007-9308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-007-9308-4

Keywords

Navigation